是的,我知道这个主题之前已经被讨论过了:

Python成语链(扁平化)有限迭代对象的无限迭代? 在Python中扁平化一个浅列表 理解平展一个序列的序列吗? 我如何从列表的列表中创建一个平面列表?

但据我所知,所有的解决方案,除了一个,在像[[[1,2,3],[4,5]],6]这样的列表上失败,其中期望的输出是[1,2,3,4,5,6](或者更好,一个迭代器)。

我看到的唯一解决方案,适用于任意嵌套是在这个问题:

def flatten(x):
    result = []
    for el in x:
        if hasattr(el, "__iter__") and not isinstance(el, basestring):
            result.extend(flatten(el))
        else:
            result.append(el)
    return result

这是最好的方法吗?我是不是忽略了什么?任何问题吗?


当前回答

这是一个简单的函数,它将任意深度的列表平展。不递归,避免堆栈溢出。

from copy import deepcopy

def flatten_list(nested_list):
    """Flatten an arbitrarily nested list, without recursion (to avoid
    stack overflows). Returns a new list, the original list is unchanged.

    >> list(flatten_list([1, 2, 3, [4], [], [[[[[[[[[5]]]]]]]]]]))
    [1, 2, 3, 4, 5]
    >> list(flatten_list([[1, 2], 3]))
    [1, 2, 3]

    """
    nested_list = deepcopy(nested_list)

    while nested_list:
        sublist = nested_list.pop(0)

        if isinstance(sublist, list):
            nested_list = sublist + nested_list
        else:
            yield sublist

其他回答

我的解决方案:

import collections


def flatten(x):
    if isinstance(x, collections.Iterable):
        return [a for i in x for a in flatten(i)]
    else:
        return [x]

更简洁一点,但基本相同。

尝试在Python中创建一个可以平化不规则列表的函数是很有趣的,但当然,这就是Python的目的(让编程变得有趣)。以下生成器工作得相当好,但有一些注意事项:

def flatten(iterable):
    try:
        for item in iterable:
            yield from flatten(item)
    except TypeError:
        yield iterable

它将平摊您可能希望保留的数据类型(如bytearray、bytes和str对象)。此外,代码依赖于这样一个事实,即从非可迭代对象请求迭代器会引发TypeError。

>>> L = [[[1, 2, 3], [4, 5]], 6]
>>> def flatten(iterable):
    try:
        for item in iterable:
            yield from flatten(item)
    except TypeError:
        yield iterable


>>> list(flatten(L))
[1, 2, 3, 4, 5, 6]
>>>

编辑:

我不同意之前的实现。问题是你不能将非可迭代对象的东西平展。它令人困惑,给人错误的印象的论点。

>>> list(flatten(123))
[123]
>>>

下面的生成器与第一个生成器几乎相同,但不存在试图将不可迭代对象平展的问题。当给它一个不恰当的论证时,它就会失败。

def flatten(iterable):
    for item in iterable:
        try:
            yield from flatten(item)
        except TypeError:
            yield item

使用提供的列表测试生成器可以正常工作。但是,当给它一个不可迭代对象时,新代码将引发TypeError。下面是新行为的示例。

>>> L = [[[1, 2, 3], [4, 5]], 6]
>>> list(flatten(L))
[1, 2, 3, 4, 5, 6]
>>> list(flatten(123))
Traceback (most recent call last):
  File "<pyshell#32>", line 1, in <module>
    list(flatten(123))
  File "<pyshell#27>", line 2, in flatten
    for item in iterable:
TypeError: 'int' object is not iterable
>>>

从我之前的回答来看,这个函数使我能想到的大多数情况变得平坦。我相信这适用于python 2.3。

def flatten(item, keepcls=(), keepobj=()):
    if not hasattr(item, '__iter__') or isinstance(item, keepcls) or item in keepobj:
        yield item
    else:
        for i in item:
            for j in flatten(i, keepcls, keepobj + (item,)):
                yield j

循环链表

>>> list(flatten([1, 2, [...], 3]))
[1, 2, [1, 2, [...], 3], 3]

深度优先列表

>>> list(flatten([[[1, 2, 3], [4, 5]], 6]))
[1, 2, 3, 4, 5, 6]

嵌套重复列表:

>>> list(flatten([[1,2],[1,[1,2]],[1,2]]))
[1, 2, 1, 1, 2, 1, 2]

带有字典的列表(或其他不要压平的对象)

>>> list(flatten([1,2, {'a':1, 'b':2}, 'text'], keepcls=(dict, str)))
[1, 2, {'a': 1, 'b': 2}, 'text']

任何iterable

>>> list(flatten((x for x in [1,2, set([3,(4,5),6])])))
[1, 2, 4, 5, 3, 6]

您可能希望在keepcls中保留一些默认类来进行调用 函数更简洁。

这将扁平化一个列表或字典(或列表的列表或字典的字典等)。它假设值是字符串,并创建一个字符串,将每个项与分隔符参数连接起来。如果需要,可以使用分隔符将结果拆分为列表对象。如果下一个值是列表或字符串,则使用递归。使用key参数来告诉您是否需要字典对象中的键或值(将key设置为false)。

def flatten_obj(n_obj, key=True, my_sep=''):
    my_string = ''
    if type(n_obj) == list:
        for val in n_obj:
            my_sep_setter = my_sep if my_string != '' else ''
            if type(val) == list or type(val) == dict:
                my_string += my_sep_setter + flatten_obj(val, key, my_sep)
            else:
                my_string += my_sep_setter + val
    elif type(n_obj) == dict:
        for k, v in n_obj.items():
            my_sep_setter = my_sep if my_string != '' else ''
            d_val = k if key else v
            if type(v) == list or type(v) == dict:
                my_string += my_sep_setter + flatten_obj(v, key, my_sep)
            else:
                my_string += my_sep_setter + d_val
    elif type(n_obj) == str:
        my_sep_setter = my_sep if my_string != '' else ''
        my_string += my_sep_setter + n_obj
        return my_string
    return my_string

print(flatten_obj(['just', 'a', ['test', 'to', 'try'], 'right', 'now', ['or', 'later', 'today'],
                [{'dictionary_test': 'test'}, {'dictionary_test_two': 'later_today'}, 'my power is 9000']], my_sep=', ')

收益率:

just, a, test, to, try, right, now, or, later, today, dictionary_test, dictionary_test_two, my power is 9000

你可以使用第三方包iteration_utilities中的deepflatten:

>>> from iteration_utilities import deepflatten
>>> L = [[[1, 2, 3], [4, 5]], 6]
>>> list(deepflatten(L))
[1, 2, 3, 4, 5, 6]

>>> list(deepflatten(L, types=list))  # only flatten "inner" lists
[1, 2, 3, 4, 5, 6]

它是一个迭代器,所以你需要迭代它(例如用列表包装它或在循环中使用它)。在内部,它使用迭代方法而不是递归方法,并且它是作为C扩展编写的,因此它可以比纯python方法更快:

>>> %timeit list(deepflatten(L))
12.6 µs ± 298 ns per loop (mean ± std. dev. of 7 runs, 100000 loops each)
>>> %timeit list(deepflatten(L, types=list))
8.7 µs ± 139 ns per loop (mean ± std. dev. of 7 runs, 100000 loops each)

>>> %timeit list(flatten(L))   # Cristian - Python 3.x approach from https://stackoverflow.com/a/2158532/5393381
86.4 µs ± 4.42 µs per loop (mean ± std. dev. of 7 runs, 10000 loops each)

>>> %timeit list(flatten(L))   # Josh Lee - https://stackoverflow.com/a/2158522/5393381
107 µs ± 2.99 µs per loop (mean ± std. dev. of 7 runs, 10000 loops each)

>>> %timeit list(genflat(L, list))  # Alex Martelli - https://stackoverflow.com/a/2159079/5393381
23.1 µs ± 710 ns per loop (mean ± std. dev. of 7 runs, 10000 loops each)

我是iteration_utilities库的作者。