是的,我知道这个主题之前已经被讨论过了:

Python成语链(扁平化)有限迭代对象的无限迭代? 在Python中扁平化一个浅列表 理解平展一个序列的序列吗? 我如何从列表的列表中创建一个平面列表?

但据我所知,所有的解决方案,除了一个,在像[[[1,2,3],[4,5]],6]这样的列表上失败,其中期望的输出是[1,2,3,4,5,6](或者更好,一个迭代器)。

我看到的唯一解决方案,适用于任意嵌套是在这个问题:

def flatten(x):
    result = []
    for el in x:
        if hasattr(el, "__iter__") and not isinstance(el, basestring):
            result.extend(flatten(el))
        else:
            result.append(el)
    return result

这是最好的方法吗?我是不是忽略了什么?任何问题吗?


当前回答

我们也可以使用python的'type'函数。当迭代列表时,我们检查项是否为列表。如果不是,我们“追加”它,否则我们“扩展”它。这里是一个示例代码-

l=[1,2,[3,4],5,[6,7,8]]
x=[]
for i in l:
    if type(i) is list:
        x.extend(i)
    else:
        x.append(i)
print x

输出:

[1, 2, 3, 4, 5, 6, 7, 8]

要了解更多关于append()和extend()的信息,请访问这个网站: https://docs.python.org/2/tutorial/datastructures.html

其他回答

没有递归或嵌套循环。几行。格式良好,易于阅读:

def flatten_deep(arr: list):
    """ Flattens arbitrarily-nested list `arr` into single-dimensional. """

    while arr:
        if isinstance(arr[0], list):  # Checks whether first element is a list
            arr = arr[0] + arr[1:]  # If so, flattens that first element one level
        else:
            yield arr.pop(0)  # Otherwise yield as part of the flat array

flatten_deep(L)

从我自己的代码https://github.com/jorgeorpinel/flatten_nested_lists/blob/master/flatten.py

只需使用函数库: PIP安装功能

import funcy


funcy.flatten([[[[1, 1], 1], 2], 3]) # returns generator
funcy.lflatten([[[[1, 1], 1], 2], 3]) # returns list

用Python 3迭代解决

此解决方案可用于除str和bytes以外的所有对象。

from collections import Iterable
from collections import Iterator


def flat_iter(obj):
    stack = [obj]
    while stack:
        element = stack.pop()
        if element and isinstance(element, Iterator):
            stack.append(element)
            try:
                stack.append(next(element))
            except StopIteration:
                stack.pop()
        elif isinstance(element, Iterable) and not isinstance(element, (str, bytes)):
            stack.append(iter(element))
        else:
            yield element


tree_list = [[(1,2,3),(4,5,6, (7,8, 'next element is 5')), (5,6), [[[3,4,5],'foo1'],'foo2'],'foo3']]

not_iterable = 10

it1 = flat_iter(tree_list)
it2 = flat_iter(not_iterable)

print(list(it1))
print(list(it2))

[1, 2, 3, 4, 5, 6, 7, 8,下一个元素是5,5,6,3,4,5,‘foo1’,‘foo2’,‘foo3’) [10]

使用生成器函数可以使示例更易于阅读并提高性能。

Python 2

使用2.6中添加的Iterable ABC:

from collections import Iterable

def flatten(xs):
    for x in xs:
        if isinstance(x, Iterable) and not isinstance(x, basestring):
            for item in flatten(x):
                yield item
        else:
            yield x

Python 3

在Python 3中,basestring不再是,但元组(str, bytes)具有相同的效果。此外,yield from操作符每次从生成器返回一个项。

from collections.abc import Iterable

def flatten(xs):
    for x in xs:
        if isinstance(x, Iterable) and not isinstance(x, (str, bytes)):
            yield from flatten(x)
        else:
            yield x

这个版本的flatten避免了python的递归限制(因此可以处理任意深度的嵌套迭代对象)。它是一个生成器,可以处理字符串和任意可迭代对象(甚至是无限迭代对象)。

import itertools as IT
import collections

def flatten(iterable, ltypes=collections.Iterable):
    remainder = iter(iterable)
    while True:
        first = next(remainder)
        if isinstance(first, ltypes) and not isinstance(first, (str, bytes)):
            remainder = IT.chain(first, remainder)
        else:
            yield first

下面是一些演示它用法的例子:

print(list(IT.islice(flatten(IT.repeat(1)),10)))
# [1, 1, 1, 1, 1, 1, 1, 1, 1, 1]

print(list(IT.islice(flatten(IT.chain(IT.repeat(2,3),
                                       {10,20,30},
                                       'foo bar'.split(),
                                       IT.repeat(1),)),10)))
# [2, 2, 2, 10, 20, 30, 'foo', 'bar', 1, 1]

print(list(flatten([[1,2,[3,4]]])))
# [1, 2, 3, 4]

seq = ([[chr(i),chr(i-32)] for i in range(ord('a'), ord('z')+1)] + list(range(0,9)))
print(list(flatten(seq)))
# ['a', 'A', 'b', 'B', 'c', 'C', 'd', 'D', 'e', 'E', 'f', 'F', 'g', 'G', 'h', 'H',
# 'i', 'I', 'j', 'J', 'k', 'K', 'l', 'L', 'm', 'M', 'n', 'N', 'o', 'O', 'p', 'P',
# 'q', 'Q', 'r', 'R', 's', 'S', 't', 'T', 'u', 'U', 'v', 'V', 'w', 'W', 'x', 'X',
# 'y', 'Y', 'z', 'Z', 0, 1, 2, 3, 4, 5, 6, 7, 8]

虽然flatten可以处理无限的生成器,但它不能处理无限的嵌套:

def infinitely_nested():
    while True:
        yield IT.chain(infinitely_nested(), IT.repeat(1))

print(list(IT.islice(flatten(infinitely_nested()), 10)))
# hangs