是的,我知道这个主题之前已经被讨论过了:

Python成语链(扁平化)有限迭代对象的无限迭代? 在Python中扁平化一个浅列表 理解平展一个序列的序列吗? 我如何从列表的列表中创建一个平面列表?

但据我所知,所有的解决方案,除了一个,在像[[[1,2,3],[4,5]],6]这样的列表上失败,其中期望的输出是[1,2,3,4,5,6](或者更好,一个迭代器)。

我看到的唯一解决方案,适用于任意嵌套是在这个问题:

def flatten(x):
    result = []
    for el in x:
        if hasattr(el, "__iter__") and not isinstance(el, basestring):
            result.extend(flatten(el))
        else:
            result.append(el)
    return result

这是最好的方法吗?我是不是忽略了什么?任何问题吗?


当前回答

用Python 3迭代解决

此解决方案可用于除str和bytes以外的所有对象。

from collections import Iterable
from collections import Iterator


def flat_iter(obj):
    stack = [obj]
    while stack:
        element = stack.pop()
        if element and isinstance(element, Iterator):
            stack.append(element)
            try:
                stack.append(next(element))
            except StopIteration:
                stack.pop()
        elif isinstance(element, Iterable) and not isinstance(element, (str, bytes)):
            stack.append(iter(element))
        else:
            yield element


tree_list = [[(1,2,3),(4,5,6, (7,8, 'next element is 5')), (5,6), [[[3,4,5],'foo1'],'foo2'],'foo3']]

not_iterable = 10

it1 = flat_iter(tree_list)
it2 = flat_iter(not_iterable)

print(list(it1))
print(list(it2))

[1, 2, 3, 4, 5, 6, 7, 8,下一个元素是5,5,6,3,4,5,‘foo1’,‘foo2’,‘foo3’) [10]

其他回答

我知道已经有很多很棒的答案,但我想添加一个答案,使用函数式编程方法来解决这个问题。在这个答案中,我使用了双重递归:

def flatten_list(seq):
    if not seq:
        return []
    elif isinstance(seq[0],list):
        return (flatten_list(seq[0])+flatten_list(seq[1:]))
    else:
        return [seq[0]]+flatten_list(seq[1:])

print(flatten_list([1,2,[3,[4],5],[6,7]]))

输出:

[1, 2, 3, 4, 5, 6, 7]

我的解决方案:

import collections


def flatten(x):
    if isinstance(x, collections.Iterable):
        return [a for i in x for a in flatten(i)]
    else:
        return [x]

更简洁一点,但基本相同。

使用生成器函数可以使示例更易于阅读并提高性能。

Python 2

使用2.6中添加的Iterable ABC:

from collections import Iterable

def flatten(xs):
    for x in xs:
        if isinstance(x, Iterable) and not isinstance(x, basestring):
            for item in flatten(x):
                yield item
        else:
            yield x

Python 3

在Python 3中,basestring不再是,但元组(str, bytes)具有相同的效果。此外,yield from操作符每次从生成器返回一个项。

from collections.abc import Iterable

def flatten(xs):
    for x in xs:
        if isinstance(x, Iterable) and not isinstance(x, (str, bytes)):
            yield from flatten(x)
        else:
            yield x

这个版本的flatten避免了python的递归限制(因此可以处理任意深度的嵌套迭代对象)。它是一个生成器,可以处理字符串和任意可迭代对象(甚至是无限迭代对象)。

import itertools as IT
import collections

def flatten(iterable, ltypes=collections.Iterable):
    remainder = iter(iterable)
    while True:
        first = next(remainder)
        if isinstance(first, ltypes) and not isinstance(first, (str, bytes)):
            remainder = IT.chain(first, remainder)
        else:
            yield first

下面是一些演示它用法的例子:

print(list(IT.islice(flatten(IT.repeat(1)),10)))
# [1, 1, 1, 1, 1, 1, 1, 1, 1, 1]

print(list(IT.islice(flatten(IT.chain(IT.repeat(2,3),
                                       {10,20,30},
                                       'foo bar'.split(),
                                       IT.repeat(1),)),10)))
# [2, 2, 2, 10, 20, 30, 'foo', 'bar', 1, 1]

print(list(flatten([[1,2,[3,4]]])))
# [1, 2, 3, 4]

seq = ([[chr(i),chr(i-32)] for i in range(ord('a'), ord('z')+1)] + list(range(0,9)))
print(list(flatten(seq)))
# ['a', 'A', 'b', 'B', 'c', 'C', 'd', 'D', 'e', 'E', 'f', 'F', 'g', 'G', 'h', 'H',
# 'i', 'I', 'j', 'J', 'k', 'K', 'l', 'L', 'm', 'M', 'n', 'N', 'o', 'O', 'p', 'P',
# 'q', 'Q', 'r', 'R', 's', 'S', 't', 'T', 'u', 'U', 'v', 'V', 'w', 'W', 'x', 'X',
# 'y', 'Y', 'z', 'Z', 0, 1, 2, 3, 4, 5, 6, 7, 8]

虽然flatten可以处理无限的生成器,但它不能处理无限的嵌套:

def infinitely_nested():
    while True:
        yield IT.chain(infinitely_nested(), IT.repeat(1))

print(list(IT.islice(flatten(infinitely_nested()), 10)))
# hangs

尝试在Python中创建一个可以平化不规则列表的函数是很有趣的,但当然,这就是Python的目的(让编程变得有趣)。以下生成器工作得相当好,但有一些注意事项:

def flatten(iterable):
    try:
        for item in iterable:
            yield from flatten(item)
    except TypeError:
        yield iterable

它将平摊您可能希望保留的数据类型(如bytearray、bytes和str对象)。此外,代码依赖于这样一个事实,即从非可迭代对象请求迭代器会引发TypeError。

>>> L = [[[1, 2, 3], [4, 5]], 6]
>>> def flatten(iterable):
    try:
        for item in iterable:
            yield from flatten(item)
    except TypeError:
        yield iterable


>>> list(flatten(L))
[1, 2, 3, 4, 5, 6]
>>>

编辑:

我不同意之前的实现。问题是你不能将非可迭代对象的东西平展。它令人困惑,给人错误的印象的论点。

>>> list(flatten(123))
[123]
>>>

下面的生成器与第一个生成器几乎相同,但不存在试图将不可迭代对象平展的问题。当给它一个不恰当的论证时,它就会失败。

def flatten(iterable):
    for item in iterable:
        try:
            yield from flatten(item)
        except TypeError:
            yield item

使用提供的列表测试生成器可以正常工作。但是,当给它一个不可迭代对象时,新代码将引发TypeError。下面是新行为的示例。

>>> L = [[[1, 2, 3], [4, 5]], 6]
>>> list(flatten(L))
[1, 2, 3, 4, 5, 6]
>>> list(flatten(123))
Traceback (most recent call last):
  File "<pyshell#32>", line 1, in <module>
    list(flatten(123))
  File "<pyshell#27>", line 2, in flatten
    for item in iterable:
TypeError: 'int' object is not iterable
>>>