是的,我知道这个主题之前已经被讨论过了:

Python成语链(扁平化)有限迭代对象的无限迭代? 在Python中扁平化一个浅列表 理解平展一个序列的序列吗? 我如何从列表的列表中创建一个平面列表?

但据我所知,所有的解决方案,除了一个,在像[[[1,2,3],[4,5]],6]这样的列表上失败,其中期望的输出是[1,2,3,4,5,6](或者更好,一个迭代器)。

我看到的唯一解决方案,适用于任意嵌套是在这个问题:

def flatten(x):
    result = []
    for el in x:
        if hasattr(el, "__iter__") and not isinstance(el, basestring):
            result.extend(flatten(el))
        else:
            result.append(el)
    return result

这是最好的方法吗?我是不是忽略了什么?任何问题吗?


当前回答

这是另一种py2方法,我不确定它是否最快或最优雅或最安全…

from collections import Iterable
from itertools import imap, repeat, chain


def flat(seqs, ignore=(int, long, float, basestring)):
    return repeat(seqs, 1) if any(imap(isinstance, repeat(seqs), ignore)) or not isinstance(seqs, Iterable) else chain.from_iterable(imap(flat, seqs))

它可以忽略你想要的任何特定(或派生)类型,它返回一个迭代器,所以你可以将它转换为任何特定的容器,如list, tuple, dict或简单地消耗它,以减少内存占用,无论是好是坏,它可以处理初始的不可迭代对象,如int…

注意,大部分繁重的工作都是在C中完成的,因为据我所知,itertools就是这样实现的,所以虽然它是递归的,但AFAIK它不受python递归深度的限制,因为函数调用是在C中发生的,尽管这并不意味着你受到内存的限制,特别是在OS X中,它的堆栈大小有一个硬限制,直到今天(OS X Mavericks)…

有一个稍微快一点的方法,但不太便携的方法,只有在你可以假设输入的基本元素可以显式确定的情况下才使用它,否则你会得到一个无限递归,而OS X有限的堆栈大小,将抛出一个分割错误相当快……

def flat(seqs, ignore={int, long, float, str, unicode}):
    return repeat(seqs, 1) if type(seqs) in ignore or not isinstance(seqs, Iterable) else chain.from_iterable(imap(flat, seqs))

这里我们使用集合来检查类型,所以它使用O(1) vs O(类型数量)来检查是否应该忽略一个元素,当然,任何带有指定的被忽略类型的派生类型的值都会失败,这就是为什么它使用str, unicode,所以要小心使用它…

测试:

import random

def test_flat(test_size=2000):
    def increase_depth(value, depth=1):
        for func in xrange(depth):
            value = repeat(value, 1)
        return value

    def random_sub_chaining(nested_values):
        for values in nested_values:
            yield chain((values,), chain.from_iterable(imap(next, repeat(nested_values, random.randint(1, 10)))))

    expected_values = zip(xrange(test_size), imap(str, xrange(test_size)))
    nested_values = random_sub_chaining((increase_depth(value, depth) for depth, value in enumerate(expected_values)))
    assert not any(imap(cmp, chain.from_iterable(expected_values), flat(chain(((),), nested_values, ((),)))))

>>> test_flat()
>>> list(flat([[[1, 2, 3], [4, 5]], 6]))
[1, 2, 3, 4, 5, 6]
>>>  

$ uname -a
Darwin Samys-MacBook-Pro.local 13.3.0 Darwin Kernel Version 13.3.0: Tue Jun  3 21:27:35 PDT 2014; root:xnu-2422.110.17~1/RELEASE_X86_64 x86_64
$ python --version
Python 2.7.5

其他回答

从我之前的回答来看,这个函数使我能想到的大多数情况变得平坦。我相信这适用于python 2.3。

def flatten(item, keepcls=(), keepobj=()):
    if not hasattr(item, '__iter__') or isinstance(item, keepcls) or item in keepobj:
        yield item
    else:
        for i in item:
            for j in flatten(i, keepcls, keepobj + (item,)):
                yield j

循环链表

>>> list(flatten([1, 2, [...], 3]))
[1, 2, [1, 2, [...], 3], 3]

深度优先列表

>>> list(flatten([[[1, 2, 3], [4, 5]], 6]))
[1, 2, 3, 4, 5, 6]

嵌套重复列表:

>>> list(flatten([[1,2],[1,[1,2]],[1,2]]))
[1, 2, 1, 1, 2, 1, 2]

带有字典的列表(或其他不要压平的对象)

>>> list(flatten([1,2, {'a':1, 'b':2}, 'text'], keepcls=(dict, str)))
[1, 2, {'a': 1, 'b': 2}, 'text']

任何iterable

>>> list(flatten((x for x in [1,2, set([3,(4,5),6])])))
[1, 2, 4, 5, 3, 6]

您可能希望在keepcls中保留一些默认类来进行调用 函数更简洁。

我修改了接受的答案的代码,并添加了关键字max_depth,以只将其压平到指定的深度。Max_depth =0表示列表保持原样。也许有人可以用它:

def flatten(l, __depth=0, max_depth=100):

    for el in l:

        if isinstance(el, collections.Iterable) and not isinstance(el, (str, bytes)):

            __depth += 1
            if __depth <= max_depth:
                yield from flatten(el, __depth=__depth, max_depth=max_depth)
            else:
                yield el
            __depth -= 1

        else:

            yield el

一些例子:

# A
l = []
depth = 5
for i in range(depth):
    el = i
    for j in range(i):
        el = [el]
    l.append(el)
# [0, [1], [[2]], [[[3]]], [[[[4]]]]]

for i in range(depth):
    print(list(flatten_gen(l, max_depth=i)))
# [0, [1], [[2]], [[[3]]], [[[[4]]]]]
# [0,  1,   [2],   [[3]],   [[[4]]]]
# [0,  1,    2,     [3],     [[4]]]
# [0,  1,    2,      3,       [4]]
# [0,  1,    2,      3,        4]


# B
l = [[1, 2], [3, 4, [5, 6, [7, [8, [9]]], 10], 12, [13]], 14, [15]]

for i in range(6):
    print(list(flatten_gen(l, max_depth=i)))
# [[1, 2], [3, 4, [5, 6, [7, [8, [9]]], 10], 12, [13]], 14, [15]]
# [ 1, 2,   3, 4, [5, 6, [7, [8, [9]]], 10], 12, [13],  14,  15]
# [ 1, 2,   3, 4,  5, 6, [7, [8, [9]]], 10,  12,  13,   14,  15]
# [ 1, 2,   3, 4,  5, 6,  7, [8, [9]],  10,  12,  13,   14,  15]
# [ 1, 2,   3, 4,  5, 6,  7,  8, [9],   10,  12,  13,   14,  15]
# [ 1, 2,   3, 4,  5, 6,  7,  8,  9,    10,  12,  13,   14,  15]
def nested_list(depth):
    l = [depth]
    for i in range(depth-1, 0, -1):
        l = [i, l]
    return l

nested_list(10)

[1, [2, [3, [4, [5, [6, [7, [8, [9, [10]]]]]]]]]].

def Flatten(ul):
    fl = []
    for i in ul:
        if type(i) is list:
            fl += Flatten(i)
        else:
            fl += [i]
    return fl

Flatten(nested_list(10))

[1, 2, 3, 4, 5, 6, 7, 8, 9, 10]

基准测试

l = nested_list(100)

https://stackoverflow.com/a/2158532

import collections

def flatten(l):
    for el in l:
        if isinstance(el, collections.Iterable) and not isinstance(el, (str, bytes)):
            yield from flatten(el)
        else:
            yield el
%%timeit -n 1000
list(flatten(l))

320µs±14.3µs / loop(平均±std. dev. 7次运行,每个循环1000次)

%%timeit -n 1000
Flatten(l)

60µs±10.2µs / loop(平均±std. dev. 7次运行,每个循环1000次)

list(flatten(l)) == Flatten(l)

真正的

我的解决方案:

import collections


def flatten(x):
    if isinstance(x, collections.Iterable):
        return [a for i in x for a in flatten(i)]
    else:
        return [x]

更简洁一点,但基本相同。

下面是2.7.5中的compiler.ast.flatten实现:

def flatten(seq):
    l = []
    for elt in seq:
        t = type(elt)
        if t is tuple or t is list:
            for elt2 in flatten(elt):
                l.append(elt2)
        else:
            l.append(elt)
    return l

有更好、更快的方法(如果你已经到达这里,你已经看到它们了)

还要注意:

2.6版后已移除:在Python 3中已移除编译器包。