是的,我知道这个主题之前已经被讨论过了:

Python成语链(扁平化)有限迭代对象的无限迭代? 在Python中扁平化一个浅列表 理解平展一个序列的序列吗? 我如何从列表的列表中创建一个平面列表?

但据我所知,所有的解决方案,除了一个,在像[[[1,2,3],[4,5]],6]这样的列表上失败,其中期望的输出是[1,2,3,4,5,6](或者更好,一个迭代器)。

我看到的唯一解决方案,适用于任意嵌套是在这个问题:

def flatten(x):
    result = []
    for el in x:
        if hasattr(el, "__iter__") and not isinstance(el, basestring):
            result.extend(flatten(el))
        else:
            result.append(el)
    return result

这是最好的方法吗?我是不是忽略了什么?任何问题吗?


当前回答

这个答案的一个更有效的版本是:https://stackoverflow.com/a/20495215/8887313

如果您可以控制列表的创建并愿意更改它,那么使用deque(而不是pop(0)和列表contatenation)会更有效。

import collections

def flatten_and_consume(nested_deque: collections.deque):
    while nested_deque:
        elt = nested_deque.popleft()

        elt_is_sublist = isinstance(elt, collections.deque)
        if elt_is_sublist:
            nested_deque.extendleft(reversed(elt))
        else:
            yield elt

其他回答

我的解决方案:

import collections


def flatten(x):
    if isinstance(x, collections.Iterable):
        return [a for i in x for a in flatten(i)]
    else:
        return [x]

更简洁一点,但基本相同。

使用生成器函数可以使示例更易于阅读并提高性能。

Python 2

使用2.6中添加的Iterable ABC:

from collections import Iterable

def flatten(xs):
    for x in xs:
        if isinstance(x, Iterable) and not isinstance(x, basestring):
            for item in flatten(x):
                yield item
        else:
            yield x

Python 3

在Python 3中,basestring不再是,但元组(str, bytes)具有相同的效果。此外,yield from操作符每次从生成器返回一个项。

from collections.abc import Iterable

def flatten(xs):
    for x in xs:
        if isinstance(x, Iterable) and not isinstance(x, (str, bytes)):
            yield from flatten(x)
        else:
            yield x

这是我的递归flatten的函数版本,它可以处理元组和列表,并允许您抛出任何位置参数的混合。返回一个生成器,它会逐参数依次生成整个序列:

flatten = lambda *n: (e for a in n
    for e in (flatten(*a) if isinstance(a, (tuple, list)) else (a,)))

用法:

l1 = ['a', ['b', ('c', 'd')]]
l2 = [0, 1, (2, 3), [[4, 5, (6, 7, (8,), [9]), 10]], (11,)]
print list(flatten(l1, -2, -1, l2))
['a', 'b', 'c', 'd', -2, -1, 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11]

我使用递归解决嵌套列表与任何深度

def combine_nlist(nlist,init=0,combiner=lambda x,y: x+y):
    '''
    apply function: combiner to a nested list element by element(treated as flatten list)
    '''
    current_value=init
    for each_item in nlist:
        if isinstance(each_item,list):
            current_value =combine_nlist(each_item,current_value,combiner)
        else:
            current_value = combiner(current_value,each_item)
    return current_value

所以在我定义函数combine_nlist之后,很容易使用这个函数来做flatting。或者你可以把它组合成一个函数。我喜欢我的解决方案,因为它可以应用于任何嵌套列表。

def flatten_nlist(nlist):
    return combine_nlist(nlist,[],lambda x,y:x+[y])

结果

In [379]: flatten_nlist([1,2,3,[4,5],[6],[[[7],8],9],10])
Out[379]: [1, 2, 3, 4, 5, 6, 7, 8, 9, 10]

这是另一种py2方法,我不确定它是否最快或最优雅或最安全…

from collections import Iterable
from itertools import imap, repeat, chain


def flat(seqs, ignore=(int, long, float, basestring)):
    return repeat(seqs, 1) if any(imap(isinstance, repeat(seqs), ignore)) or not isinstance(seqs, Iterable) else chain.from_iterable(imap(flat, seqs))

它可以忽略你想要的任何特定(或派生)类型,它返回一个迭代器,所以你可以将它转换为任何特定的容器,如list, tuple, dict或简单地消耗它,以减少内存占用,无论是好是坏,它可以处理初始的不可迭代对象,如int…

注意,大部分繁重的工作都是在C中完成的,因为据我所知,itertools就是这样实现的,所以虽然它是递归的,但AFAIK它不受python递归深度的限制,因为函数调用是在C中发生的,尽管这并不意味着你受到内存的限制,特别是在OS X中,它的堆栈大小有一个硬限制,直到今天(OS X Mavericks)…

有一个稍微快一点的方法,但不太便携的方法,只有在你可以假设输入的基本元素可以显式确定的情况下才使用它,否则你会得到一个无限递归,而OS X有限的堆栈大小,将抛出一个分割错误相当快……

def flat(seqs, ignore={int, long, float, str, unicode}):
    return repeat(seqs, 1) if type(seqs) in ignore or not isinstance(seqs, Iterable) else chain.from_iterable(imap(flat, seqs))

这里我们使用集合来检查类型,所以它使用O(1) vs O(类型数量)来检查是否应该忽略一个元素,当然,任何带有指定的被忽略类型的派生类型的值都会失败,这就是为什么它使用str, unicode,所以要小心使用它…

测试:

import random

def test_flat(test_size=2000):
    def increase_depth(value, depth=1):
        for func in xrange(depth):
            value = repeat(value, 1)
        return value

    def random_sub_chaining(nested_values):
        for values in nested_values:
            yield chain((values,), chain.from_iterable(imap(next, repeat(nested_values, random.randint(1, 10)))))

    expected_values = zip(xrange(test_size), imap(str, xrange(test_size)))
    nested_values = random_sub_chaining((increase_depth(value, depth) for depth, value in enumerate(expected_values)))
    assert not any(imap(cmp, chain.from_iterable(expected_values), flat(chain(((),), nested_values, ((),)))))

>>> test_flat()
>>> list(flat([[[1, 2, 3], [4, 5]], 6]))
[1, 2, 3, 4, 5, 6]
>>>  

$ uname -a
Darwin Samys-MacBook-Pro.local 13.3.0 Darwin Kernel Version 13.3.0: Tue Jun  3 21:27:35 PDT 2014; root:xnu-2422.110.17~1/RELEASE_X86_64 x86_64
$ python --version
Python 2.7.5