是的,我知道这个主题之前已经被讨论过了:

Python成语链(扁平化)有限迭代对象的无限迭代? 在Python中扁平化一个浅列表 理解平展一个序列的序列吗? 我如何从列表的列表中创建一个平面列表?

但据我所知,所有的解决方案,除了一个,在像[[[1,2,3],[4,5]],6]这样的列表上失败,其中期望的输出是[1,2,3,4,5,6](或者更好,一个迭代器)。

我看到的唯一解决方案,适用于任意嵌套是在这个问题:

def flatten(x):
    result = []
    for el in x:
        if hasattr(el, "__iter__") and not isinstance(el, basestring):
            result.extend(flatten(el))
        else:
            result.append(el)
    return result

这是最好的方法吗?我是不是忽略了什么?任何问题吗?


当前回答

使用生成器函数可以使示例更易于阅读并提高性能。

Python 2

使用2.6中添加的Iterable ABC:

from collections import Iterable

def flatten(xs):
    for x in xs:
        if isinstance(x, Iterable) and not isinstance(x, basestring):
            for item in flatten(x):
                yield item
        else:
            yield x

Python 3

在Python 3中,basestring不再是,但元组(str, bytes)具有相同的效果。此外,yield from操作符每次从生成器返回一个项。

from collections.abc import Iterable

def flatten(xs):
    for x in xs:
        if isinstance(x, Iterable) and not isinstance(x, (str, bytes)):
            yield from flatten(x)
        else:
            yield x

其他回答

熊猫有这样的功能。它返回一个迭代器。

In [1]: import pandas
In [2]: pandas.core.common.flatten([[[1, 2, 3], [4, 5]], 6])
Out[2]: <generator object flatten at 0x7f12ade66200>
In [3]: list(pandas.core.common.flatten([[[1, 2, 3], [4, 5]], 6]))
Out[3]: [1, 2, 3, 4, 5, 6]

这是一个简单的函数,它将任意深度的列表平展。不递归,避免堆栈溢出。

from copy import deepcopy

def flatten_list(nested_list):
    """Flatten an arbitrarily nested list, without recursion (to avoid
    stack overflows). Returns a new list, the original list is unchanged.

    >> list(flatten_list([1, 2, 3, [4], [], [[[[[[[[[5]]]]]]]]]]))
    [1, 2, 3, 4, 5]
    >> list(flatten_list([[1, 2], 3]))
    [1, 2, 3]

    """
    nested_list = deepcopy(nested_list)

    while nested_list:
        sublist = nested_list.pop(0)

        if isinstance(sublist, list):
            nested_list = sublist + nested_list
        else:
            yield sublist

这是另一种py2方法,我不确定它是否最快或最优雅或最安全…

from collections import Iterable
from itertools import imap, repeat, chain


def flat(seqs, ignore=(int, long, float, basestring)):
    return repeat(seqs, 1) if any(imap(isinstance, repeat(seqs), ignore)) or not isinstance(seqs, Iterable) else chain.from_iterable(imap(flat, seqs))

它可以忽略你想要的任何特定(或派生)类型,它返回一个迭代器,所以你可以将它转换为任何特定的容器,如list, tuple, dict或简单地消耗它,以减少内存占用,无论是好是坏,它可以处理初始的不可迭代对象,如int…

注意,大部分繁重的工作都是在C中完成的,因为据我所知,itertools就是这样实现的,所以虽然它是递归的,但AFAIK它不受python递归深度的限制,因为函数调用是在C中发生的,尽管这并不意味着你受到内存的限制,特别是在OS X中,它的堆栈大小有一个硬限制,直到今天(OS X Mavericks)…

有一个稍微快一点的方法,但不太便携的方法,只有在你可以假设输入的基本元素可以显式确定的情况下才使用它,否则你会得到一个无限递归,而OS X有限的堆栈大小,将抛出一个分割错误相当快……

def flat(seqs, ignore={int, long, float, str, unicode}):
    return repeat(seqs, 1) if type(seqs) in ignore or not isinstance(seqs, Iterable) else chain.from_iterable(imap(flat, seqs))

这里我们使用集合来检查类型,所以它使用O(1) vs O(类型数量)来检查是否应该忽略一个元素,当然,任何带有指定的被忽略类型的派生类型的值都会失败,这就是为什么它使用str, unicode,所以要小心使用它…

测试:

import random

def test_flat(test_size=2000):
    def increase_depth(value, depth=1):
        for func in xrange(depth):
            value = repeat(value, 1)
        return value

    def random_sub_chaining(nested_values):
        for values in nested_values:
            yield chain((values,), chain.from_iterable(imap(next, repeat(nested_values, random.randint(1, 10)))))

    expected_values = zip(xrange(test_size), imap(str, xrange(test_size)))
    nested_values = random_sub_chaining((increase_depth(value, depth) for depth, value in enumerate(expected_values)))
    assert not any(imap(cmp, chain.from_iterable(expected_values), flat(chain(((),), nested_values, ((),)))))

>>> test_flat()
>>> list(flat([[[1, 2, 3], [4, 5]], 6]))
[1, 2, 3, 4, 5, 6]
>>>  

$ uname -a
Darwin Samys-MacBook-Pro.local 13.3.0 Darwin Kernel Version 13.3.0: Tue Jun  3 21:27:35 PDT 2014; root:xnu-2422.110.17~1/RELEASE_X86_64 x86_64
$ python --version
Python 2.7.5

我使用递归解决嵌套列表与任何深度

def combine_nlist(nlist,init=0,combiner=lambda x,y: x+y):
    '''
    apply function: combiner to a nested list element by element(treated as flatten list)
    '''
    current_value=init
    for each_item in nlist:
        if isinstance(each_item,list):
            current_value =combine_nlist(each_item,current_value,combiner)
        else:
            current_value = combiner(current_value,each_item)
    return current_value

所以在我定义函数combine_nlist之后,很容易使用这个函数来做flatting。或者你可以把它组合成一个函数。我喜欢我的解决方案,因为它可以应用于任何嵌套列表。

def flatten_nlist(nlist):
    return combine_nlist(nlist,[],lambda x,y:x+[y])

结果

In [379]: flatten_nlist([1,2,3,[4,5],[6],[[[7],8],9],10])
Out[379]: [1, 2, 3, 4, 5, 6, 7, 8, 9, 10]

这是python2上flatten的一个简单实现

flatten=lambda l: reduce(lambda x,y:x+y,map(flatten,l),[]) if isinstance(l,list) else [l]

test=[[1,2,3,[3,4,5],[6,7,[8,9,[10,[11,[12,13,14]]]]]],]
print flatten(test)

#output [1, 2, 3, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14]