是的,我知道这个主题之前已经被讨论过了:

Python成语链(扁平化)有限迭代对象的无限迭代? 在Python中扁平化一个浅列表 理解平展一个序列的序列吗? 我如何从列表的列表中创建一个平面列表?

但据我所知,所有的解决方案,除了一个,在像[[[1,2,3],[4,5]],6]这样的列表上失败,其中期望的输出是[1,2,3,4,5,6](或者更好,一个迭代器)。

我看到的唯一解决方案,适用于任意嵌套是在这个问题:

def flatten(x):
    result = []
    for el in x:
        if hasattr(el, "__iter__") and not isinstance(el, basestring):
            result.extend(flatten(el))
        else:
            result.append(el)
    return result

这是最好的方法吗?我是不是忽略了什么?任何问题吗?


当前回答

使用itertools.chain:

import itertools
from collections import Iterable

def list_flatten(lst):
    flat_lst = []
    for item in itertools.chain(lst):
        if isinstance(item, Iterable):
            item = list_flatten(item)
            flat_lst.extend(item)
        else:
            flat_lst.append(item)
    return flat_lst

或没有锁链的:

def flatten(q, final):
    if not q:
        return
    if isinstance(q, list):
        if not isinstance(q[0], list):
            final.append(q[0])
        else:
            flatten(q[0], final)
        flatten(q[1:], final)
    else:
        final.append(q)

其他回答

我们也可以使用python的'type'函数。当迭代列表时,我们检查项是否为列表。如果不是,我们“追加”它,否则我们“扩展”它。这里是一个示例代码-

l=[1,2,[3,4],5,[6,7,8]]
x=[]
for i in l:
    if type(i) is list:
        x.extend(i)
    else:
        x.append(i)
print x

输出:

[1, 2, 3, 4, 5, 6, 7, 8]

要了解更多关于append()和extend()的信息,请访问这个网站: https://docs.python.org/2/tutorial/datastructures.html

这个版本的flatten避免了python的递归限制(因此可以处理任意深度的嵌套迭代对象)。它是一个生成器,可以处理字符串和任意可迭代对象(甚至是无限迭代对象)。

import itertools as IT
import collections

def flatten(iterable, ltypes=collections.Iterable):
    remainder = iter(iterable)
    while True:
        first = next(remainder)
        if isinstance(first, ltypes) and not isinstance(first, (str, bytes)):
            remainder = IT.chain(first, remainder)
        else:
            yield first

下面是一些演示它用法的例子:

print(list(IT.islice(flatten(IT.repeat(1)),10)))
# [1, 1, 1, 1, 1, 1, 1, 1, 1, 1]

print(list(IT.islice(flatten(IT.chain(IT.repeat(2,3),
                                       {10,20,30},
                                       'foo bar'.split(),
                                       IT.repeat(1),)),10)))
# [2, 2, 2, 10, 20, 30, 'foo', 'bar', 1, 1]

print(list(flatten([[1,2,[3,4]]])))
# [1, 2, 3, 4]

seq = ([[chr(i),chr(i-32)] for i in range(ord('a'), ord('z')+1)] + list(range(0,9)))
print(list(flatten(seq)))
# ['a', 'A', 'b', 'B', 'c', 'C', 'd', 'D', 'e', 'E', 'f', 'F', 'g', 'G', 'h', 'H',
# 'i', 'I', 'j', 'J', 'k', 'K', 'l', 'L', 'm', 'M', 'n', 'N', 'o', 'O', 'p', 'P',
# 'q', 'Q', 'r', 'R', 's', 'S', 't', 'T', 'u', 'U', 'v', 'V', 'w', 'W', 'x', 'X',
# 'y', 'Y', 'z', 'Z', 0, 1, 2, 3, 4, 5, 6, 7, 8]

虽然flatten可以处理无限的生成器,但它不能处理无限的嵌套:

def infinitely_nested():
    while True:
        yield IT.chain(infinitely_nested(), IT.repeat(1))

print(list(IT.islice(flatten(infinitely_nested()), 10)))
# hangs

我修改了接受的答案的代码,并添加了关键字max_depth,以只将其压平到指定的深度。Max_depth =0表示列表保持原样。也许有人可以用它:

def flatten(l, __depth=0, max_depth=100):

    for el in l:

        if isinstance(el, collections.Iterable) and not isinstance(el, (str, bytes)):

            __depth += 1
            if __depth <= max_depth:
                yield from flatten(el, __depth=__depth, max_depth=max_depth)
            else:
                yield el
            __depth -= 1

        else:

            yield el

一些例子:

# A
l = []
depth = 5
for i in range(depth):
    el = i
    for j in range(i):
        el = [el]
    l.append(el)
# [0, [1], [[2]], [[[3]]], [[[[4]]]]]

for i in range(depth):
    print(list(flatten_gen(l, max_depth=i)))
# [0, [1], [[2]], [[[3]]], [[[[4]]]]]
# [0,  1,   [2],   [[3]],   [[[4]]]]
# [0,  1,    2,     [3],     [[4]]]
# [0,  1,    2,      3,       [4]]
# [0,  1,    2,      3,        4]


# B
l = [[1, 2], [3, 4, [5, 6, [7, [8, [9]]], 10], 12, [13]], 14, [15]]

for i in range(6):
    print(list(flatten_gen(l, max_depth=i)))
# [[1, 2], [3, 4, [5, 6, [7, [8, [9]]], 10], 12, [13]], 14, [15]]
# [ 1, 2,   3, 4, [5, 6, [7, [8, [9]]], 10], 12, [13],  14,  15]
# [ 1, 2,   3, 4,  5, 6, [7, [8, [9]]], 10,  12,  13,   14,  15]
# [ 1, 2,   3, 4,  5, 6,  7, [8, [9]],  10,  12,  13,   14,  15]
# [ 1, 2,   3, 4,  5, 6,  7,  8, [9],   10,  12,  13,   14,  15]
# [ 1, 2,   3, 4,  5, 6,  7,  8,  9,    10,  12,  13,   14,  15]

python 3

from collections import Iterable

L = [[[1, 2, 3], [4, 5]], 6,[7,[8,9,[10]]]]

def flatten(thing):
    result = []

    if isinstance(thing, Iterable):
        for item in thing:
            result.extend(flatten(item))
    else:
        result.append(thing)

    return result


flat = flatten(L)
print(flat)

你可以使用第三方包iteration_utilities中的deepflatten:

>>> from iteration_utilities import deepflatten
>>> L = [[[1, 2, 3], [4, 5]], 6]
>>> list(deepflatten(L))
[1, 2, 3, 4, 5, 6]

>>> list(deepflatten(L, types=list))  # only flatten "inner" lists
[1, 2, 3, 4, 5, 6]

它是一个迭代器,所以你需要迭代它(例如用列表包装它或在循环中使用它)。在内部,它使用迭代方法而不是递归方法,并且它是作为C扩展编写的,因此它可以比纯python方法更快:

>>> %timeit list(deepflatten(L))
12.6 µs ± 298 ns per loop (mean ± std. dev. of 7 runs, 100000 loops each)
>>> %timeit list(deepflatten(L, types=list))
8.7 µs ± 139 ns per loop (mean ± std. dev. of 7 runs, 100000 loops each)

>>> %timeit list(flatten(L))   # Cristian - Python 3.x approach from https://stackoverflow.com/a/2158532/5393381
86.4 µs ± 4.42 µs per loop (mean ± std. dev. of 7 runs, 10000 loops each)

>>> %timeit list(flatten(L))   # Josh Lee - https://stackoverflow.com/a/2158522/5393381
107 µs ± 2.99 µs per loop (mean ± std. dev. of 7 runs, 10000 loops each)

>>> %timeit list(genflat(L, list))  # Alex Martelli - https://stackoverflow.com/a/2159079/5393381
23.1 µs ± 710 ns per loop (mean ± std. dev. of 7 runs, 10000 loops each)

我是iteration_utilities库的作者。