是的,我知道这个主题之前已经被讨论过了:

Python成语链(扁平化)有限迭代对象的无限迭代? 在Python中扁平化一个浅列表 理解平展一个序列的序列吗? 我如何从列表的列表中创建一个平面列表?

但据我所知,所有的解决方案,除了一个,在像[[[1,2,3],[4,5]],6]这样的列表上失败,其中期望的输出是[1,2,3,4,5,6](或者更好,一个迭代器)。

我看到的唯一解决方案,适用于任意嵌套是在这个问题:

def flatten(x):
    result = []
    for el in x:
        if hasattr(el, "__iter__") and not isinstance(el, basestring):
            result.extend(flatten(el))
        else:
            result.append(el)
    return result

这是最好的方法吗?我是不是忽略了什么?任何问题吗?


当前回答

def nested_list(depth):
    l = [depth]
    for i in range(depth-1, 0, -1):
        l = [i, l]
    return l

nested_list(10)

[1, [2, [3, [4, [5, [6, [7, [8, [9, [10]]]]]]]]]].

def Flatten(ul):
    fl = []
    for i in ul:
        if type(i) is list:
            fl += Flatten(i)
        else:
            fl += [i]
    return fl

Flatten(nested_list(10))

[1, 2, 3, 4, 5, 6, 7, 8, 9, 10]

基准测试

l = nested_list(100)

https://stackoverflow.com/a/2158532

import collections

def flatten(l):
    for el in l:
        if isinstance(el, collections.Iterable) and not isinstance(el, (str, bytes)):
            yield from flatten(el)
        else:
            yield el
%%timeit -n 1000
list(flatten(l))

320µs±14.3µs / loop(平均±std. dev. 7次运行,每个循环1000次)

%%timeit -n 1000
Flatten(l)

60µs±10.2µs / loop(平均±std. dev. 7次运行,每个循环1000次)

list(flatten(l)) == Flatten(l)

真正的

其他回答

def flatten(xs):
    res = []
    def loop(ys):
        for i in ys:
            if isinstance(i, list):
                loop(i)
            else:
                res.append(i)
    loop(xs)
    return res
def nested_list(depth):
    l = [depth]
    for i in range(depth-1, 0, -1):
        l = [i, l]
    return l

nested_list(10)

[1, [2, [3, [4, [5, [6, [7, [8, [9, [10]]]]]]]]]].

def Flatten(ul):
    fl = []
    for i in ul:
        if type(i) is list:
            fl += Flatten(i)
        else:
            fl += [i]
    return fl

Flatten(nested_list(10))

[1, 2, 3, 4, 5, 6, 7, 8, 9, 10]

基准测试

l = nested_list(100)

https://stackoverflow.com/a/2158532

import collections

def flatten(l):
    for el in l:
        if isinstance(el, collections.Iterable) and not isinstance(el, (str, bytes)):
            yield from flatten(el)
        else:
            yield el
%%timeit -n 1000
list(flatten(l))

320µs±14.3µs / loop(平均±std. dev. 7次运行,每个循环1000次)

%%timeit -n 1000
Flatten(l)

60µs±10.2µs / loop(平均±std. dev. 7次运行,每个循环1000次)

list(flatten(l)) == Flatten(l)

真正的

下面是2.7.5中的compiler.ast.flatten实现:

def flatten(seq):
    l = []
    for elt in seq:
        t = type(elt)
        if t is tuple or t is list:
            for elt2 in flatten(elt):
                l.append(elt2)
        else:
            l.append(elt)
    return l

有更好、更快的方法(如果你已经到达这里,你已经看到它们了)

还要注意:

2.6版后已移除:在Python 3中已移除编译器包。

只需使用函数库: PIP安装功能

import funcy


funcy.flatten([[[[1, 1], 1], 2], 3]) # returns generator
funcy.lflatten([[[[1, 1], 1], 2], 3]) # returns list

我使用递归解决嵌套列表与任何深度

def combine_nlist(nlist,init=0,combiner=lambda x,y: x+y):
    '''
    apply function: combiner to a nested list element by element(treated as flatten list)
    '''
    current_value=init
    for each_item in nlist:
        if isinstance(each_item,list):
            current_value =combine_nlist(each_item,current_value,combiner)
        else:
            current_value = combiner(current_value,each_item)
    return current_value

所以在我定义函数combine_nlist之后,很容易使用这个函数来做flatting。或者你可以把它组合成一个函数。我喜欢我的解决方案,因为它可以应用于任何嵌套列表。

def flatten_nlist(nlist):
    return combine_nlist(nlist,[],lambda x,y:x+[y])

结果

In [379]: flatten_nlist([1,2,3,[4,5],[6],[[[7],8],9],10])
Out[379]: [1, 2, 3, 4, 5, 6, 7, 8, 9, 10]