今天,我的一个朋友在面试软件开发人员的职位时被问到以下问题:

给定两个字符串s1和s2,你将如何检查s1是否是s2的旋转版本?

例子:

如果s1 = "stackoverflow",则以下是它的一些旋转版本:

"tackoverflows"
"ackoverflowst"
"overflowstack"

其中“stackoverflwo”不是一个旋转的版本。

他给出的答案是:

取s2,找出s1的子字符串中最长的前缀,就能得到旋转的点。一旦你找到了那个点,在那个点打断s2得到s2a和s2b,然后检查是否连接(s2a,s2b) == s1

对我和我的朋友来说,这是一个很好的解决方案。但是面试官不这么认为。他要求一个更简单的解决办法。请告诉我在Java/C/ c++中你是如何做到这一点的?

提前谢谢你。


当前回答

编辑:如果你发现了,公认的答案显然比这个更优雅、更有效。我把这个答案留给了我所做的,如果我没有想到将原始字符串加倍的话。


我就用蛮力。首先检查长度,然后尝试每一个可能的旋转偏移。如果没有,则返回false;如果有,则立即返回true。

没有特别的连接需要——只需使用指针(C)或索引(Java),并在每个字符串中使用一个指针——从一个字符串的开头开始,在第二个字符串中使用当前的候选旋转偏移量,并在必要的地方进行换行。检查字符串中每个点的字符是否相等。如果你到达了第一个字符串的末尾,你就完成了。

它可能同样容易连接-尽管效率可能较低,至少在Java中是这样。

其他回答

Opera的简单指针旋转技巧是有效的,但是在运行时最糟糕的情况下效率极低。简单地想象一个有许多长重复字符的字符串,例如:

S1 = HELLOHELLOHELLO1HELLOHELLOHELLO2 S2 = HELLOHELLOHELLO2HELLOHELLOHELLO1

从计算角度来看,“循环直到出现不匹配,然后再加1,再试一次”是一种可怕的方法。

为了证明你可以毫不费力地在C语言中使用串联方法,下面是我的解决方案:

  int isRotation(const char* s1, const char* s2) {
        assert(s1 && s2);

        size_t s1Len = strlen(s1);

        if (s1Len != strlen(s2)) return 0;

        char s1SelfConcat[ 2 * s1Len + 1 ];

        sprintf(s1SelfConcat, "%s%s", s1, s1);   

        return (strstr(s1SelfConcat, s2) ? 1 : 0);
}

这在运行时间上是线性的,以开销中O(n)内存使用为代价。

(请注意,strstr()的实现是特定于平台的,但如果特别脑死亡,总是可以用更快的替代方案替代,如Boyer-Moore算法)

为什么不是这样的呢?


//is q a rotation of p?
bool isRotation(string p, string q) {
    string table = q + q;    
    return table.IndexOf(p) != -1;
}

当然,你也可以编写自己的IndexOf()函数;我不确定。net使用的是一种简单的方式还是一种更快的方式。

天真:


int IndexOf(string s) {
    for (int i = 0; i < this.Length - s.Length; i++)
        if (this.Substring(i, s.Length) == s) return i;
    return -1;
}

速度:


int IndexOf(string s) {
    int count = 0;
    for (int i = 0; i < this.Length; i++) {
        if (this[i] == s[count])
            count++;
        else
            count = 0;
        if (count == s.Length)
            return i - s.Length;
    }
    return -1;
}

编辑:我可能会有一些差一的问题;我不想检查。;)

反转其中一个字符串。取两者的FFT(将它们视为简单的整数序列)。将结果逐点相乘。使用反FFT转换回来。如果弦是彼此旋转的,那么结果将只有一个峰值——峰值的位置将由它们相对于彼此旋转的多少来指示。

纯Java答案(无空检查)

private boolean isRotation(String s1,String s2){
    if(s1.length() != s2.length()) return false;
    for(int i=0; i < s1.length()-1; i++){
        s1 = new StringBuilder(s1.substring(1)).append(s1.charAt(0)).toString();
        //--or-- s1 = s1.substring(1) + s1.charAt(0)
        if(s1.equals(s2)) return true;
    }
    return false;
}

首先确保s1和s2的长度相同。然后检查s2是否是s1与s1连接的子字符串:

algorithm checkRotation(string s1, string s2) 
  if( len(s1) != len(s2))
    return false
  if( substring(s2,concat(s1,s1))
    return true
  return false
end

在Java中:

boolean isRotation(String s1,String s2) {
    return (s1.length() == s2.length()) && ((s1+s1).indexOf(s2) != -1);
}