在人工智能和机器学习方面,监督学习和无监督学习的区别是什么? 你能举个例子简单地解释一下吗?


当前回答

监督学习:你给出各种标记的示例数据作为输入,以及正确的答案。该算法将从中学习,并开始根据输入预测正确的结果。示例:电子邮件垃圾邮件过滤器

无监督学习:你只提供数据,不告诉任何东西——比如标签或正确答案。算法自动分析数据中的模式。例如:谷歌新闻

其他回答

Supervised Learning is basically where you have input variables(x) and output variable(y) and use algorithm to learn the mapping function from input to the output. The reason why we called this as supervised is because algorithm learns from the training dataset, the algorithm iteratively makes predictions on the training data. Supervised have two types-Classification and Regression. Classification is when the output variable is category like yes/no, true/false. Regression is when the output is real values like height of person, Temperature etc.

联合国监督学习是指我们只有输入数据(X),没有输出变量。 这被称为无监督学习,因为与上面的监督学习不同,它没有正确的答案,也没有老师。算法由它们自己的设计来发现和呈现数据中有趣的结构。

无监督学习的类型有聚类和关联。

我尽量简单点。

监督学习:在这种学习技术中,我们得到一个数据集,系统已经知道该数据集的正确输出。这里,我们的系统通过预测自己的值来学习。然后,它通过使用代价函数来检查其预测与实际输出的接近程度,从而进行准确性检查。

无监督学习:在这种方法中,我们很少或根本不知道我们的结果是什么。因此,我们从不知道变量影响的数据中推导出结构。 我们根据数据中变量之间的关系对数据进行聚类,从而形成结构。 在这里,我们没有基于预测的反馈。

监督式学习: 假设一个孩子去了幼儿园。这里老师给他看了3个玩具——房子,球和汽车。现在老师给了他10个玩具。 他会根据他以前的经验把它们分为房子,球和汽车3个盒子。 因此,孩子首先是由老师监督,因为他们在几组比赛中答对了答案。然后用不知名的玩具对他进行测试。

无监督学习: 还是幼儿园的例子。给一个孩子10个玩具。他被告知要分割类似的部分。 因此,根据形状、大小、颜色、功能等特征,他会尝试将A、B、C分成3组,并将它们分组。

监理这个词的意思是你给机器提供监督/指令,帮助它找到答案。一旦它学会指令,就可以很容易地预测新的情况。

无监督意味着没有监督或指示如何找到答案/标签,机器将利用它的智能在我们的数据中找到一些模式。在这里,它不会进行预测,它只会尝试寻找具有相似数据的集群。

监督式学习

监督学习是基于对数据样本的训练 来自已分配正确分类的数据源。 这种技术用于前馈或多层 感知器(MLP)模型。这些MLP有三个特点 特点:

一层或多层不属于输入的隐藏神经元 或者网络的输出层,使网络能够学习和 解决任何复杂的问题 神经元活动所反映的非线性为 可微的, 网络的互联模型表现出高度的互联性 连通性。

These characteristics along with learning through training solve difficult and diverse problems. Learning through training in a supervised ANN model also called as error backpropagation algorithm. The error correction-learning algorithm trains the network based on the input-output samples and finds error signal, which is the difference of the output calculated and the desired output and adjusts the synaptic weights of the neurons that is proportional to the product of the error signal and the input instance of the synaptic weight. Based on this principle, error back propagation learning occurs in two passes:

传球前进:

这里,输入向量被呈现给网络。这个输入信号向前传播,一个神经元一个神经元地通过网络,并出现在输出端 网络作为输出信号:y(n) = φ(v(n)),其中v(n)是神经元的诱导局部场,定义为v(n) =Σ w(n)y(n)。在输出层o(n)计算的输出与期望的响应d(n)进行比较,并找到该神经元的误差e(n)。在这一过程中,神经网络的突触权重保持不变。

向后传递:

产生于该层输出神经元的错误信号通过网络向后传播。这将计算每个层中每个神经元的局部梯度,并允许网络的突触权值按照delta规则发生变化,如下:

Δw(n) = η * δ(n) * y(n).

这种递归计算继续进行,对每个输入模式进行向前传递和向后传递,直到网络收敛。

人工神经网络的监督学习模式是有效的,可以解决分类、植物控制、预测、预测、机器人等线性和非线性问题。

无监督学习

Self-Organizing neural networks learn using unsupervised learning algorithm to identify hidden patterns in unlabelled input data. This unsupervised refers to the ability to learn and organize information without providing an error signal to evaluate the potential solution. The lack of direction for the learning algorithm in unsupervised learning can sometime be advantageous, since it lets the algorithm to look back for patterns that have not been previously considered. The main characteristics of Self-Organizing Maps (SOM) are:

它将任意维度的输入信号模式转换为 一维或二维映射,并自适应地执行这种转换 该网络表示具有单一的前馈结构 计算层由一排排排列的神经元组成 列。在表示的每个阶段,每个输入信号都被保留 在适当的情况下, 处理紧密相关信息的神经元是紧密的 它们一起通过突触连接进行交流。

计算层也被称为竞争层,因为该层中的神经元相互竞争变得活跃。因此,这种学习算法被称为竞争算法。SOM中的无监督算法 工作分为三个阶段:

竞争阶段:

对于呈现给网络的每一个输入模式x,计算与突触权值w的内积,竞争层神经元找到一个诱发神经元竞争的判别函数,在欧氏距离上与输入权值向量接近的突触权值向量被宣布为竞争获胜者。这个神经元被称为最佳匹配神经元,

i.e. x = arg min ║x - w║.

合作的阶段:

获胜的神经元决定了合作神经元的拓扑邻域h的中心。这是通过横向相互作用d之间 合作的神经元。这种拓扑邻域在一段时间内减小了它的大小。

适应阶段:

使获胜的神经元及其邻近神经元根据输入模式增加其判别函数的个体值 通过适当的突触权重调整,

 Δw = ηh(x)(x –w).

在训练模式重复呈现后,由于邻域更新,神经网络的权重向量倾向于跟随输入模式的分布,因此神经网络在没有监督的情况下进行学习。

自组织模型自然地代表了神经生物学行为,因此被用于许多现实世界的应用,如聚类,语音识别,纹理分割,矢量编码等。

参考。

监督式机器学习 算法从训练数据集中学习的过程 预测产出。”

预测输出精度与训练数据(长度)成正比

监督学习是指你有输入变量(x)(训练数据集)和输出变量(Y)(测试数据集),你使用一种算法来学习从输入到输出的映射函数。

Y = f(X)

主要类型:

分类(离散y轴) 预测(连续y轴)

算法:

分类算法: 神经网络 Naïve贝叶斯分类器 费雪线性判别 然而, 决策树 超级向量机 预测算法: 最近的邻居 线性回归,多元回归

应用领域:

将电子邮件分类为垃圾邮件 患者是否有 疾病与否 语音识别 预测HR是否会选择特定的候选人 预测股票市场价格