在人工智能和机器学习方面,监督学习和无监督学习的区别是什么? 你能举个例子简单地解释一下吗?


当前回答

监督式学习

监督学习是我们知道原始输入的输出,即数据被标记,以便在机器学习模型的训练期间,它将了解它需要在给定的输出中检测什么,并且它将指导系统在训练期间检测预先标记的对象,在此基础上,它将检测我们在训练中提供的类似对象。

在这里,算法将知道数据的结构和模式。监督学习用于分类

例如,我们可以有一个不同的物体,其形状是正方形,圆形,三角形,我们的任务是排列相同类型的形状 标记的数据集已经标记了所有的形状,我们将在该数据集上训练机器学习模型,在训练数据集的基础上,它将开始检测形状。

联合国监管下学习

无监督学习是一种最终结果未知的无指导学习,它将对数据集进行聚类,并基于对象的相似属性将对象划分在不同的簇上并检测对象。

算法将在原始数据中搜索不同的模式,并在此基础上对数据进行聚类。无监督学习用于聚类。

例如,我们可以有多种形状的不同物体,正方形,圆形,三角形,所以它会根据对象属性进行分组,如果一个物体有四个边,它会认为它是正方形,如果它有三个边,三角形,如果没有边比圆形,这里的数据没有标记,它会学习自己检测各种形状

其他回答

机器学习: 它探索了可以从数据中学习并对数据进行预测的算法的研究和构建。这种算法通过从示例输入中构建模型来运行,以便做出数据驱动的预测或作为输出表示的决策,而不是严格地遵循静态的程序指令。

监督式学习: 这是从标记的训练数据推断出函数的机器学习任务。训练数据由一组训练示例组成。在监督学习中,每个例子都是一对,由一个输入对象(通常是一个向量)和一个期望的输出值(也称为监督信号)组成。监督学习算法分析训练数据并产生推断函数,该函数可用于映射新的示例。

由“老师”给计算机提供示例输入和它们期望的输出,目标是学习将输入映射到输出的一般规则。具体来说,有监督学习算法采用一组已知的输入数据和对数据(输出)的已知响应,并训练一个模型来生成对新数据响应的合理预测。

Unsupervised learning: It is learning without a teacher. One basic thing that you might want to do with data is to visualize it. It is the machine learning task of inferring a function to describe hidden structure from unlabeled data. Since the examples given to the learner are unlabeled, there is no error or reward signal to evaluate a potential solution. This distinguishes unsupervised learning from supervised learning. Unsupervised learning uses procedures that attempt to find natural partitions of patterns.

在无监督学习中,没有基于预测结果的反馈,也就是说,没有老师来纠正你。在无监督学习方法下,不提供标记的示例,在学习过程中没有输出的概念。因此,由学习方案/模型来寻找模式或发现输入数据的组

你应该使用无监督学习方法,当你需要一个大的 训练你的模型的数据量,以及意愿和能力 去实验和探索,当然这是一个不太好的挑战 通过更成熟的方法解决。无监督学习就是这样 可以学习比监督更大更复杂的模型 学习。这里有一个很好的例子

.

In simple words.. :) It's my understanding, feel free to correct. Supervised learning is, we know what we are predicting on the basis of provided data. So we have a column in the dataset which needs to be predicated. Unsupervised learning is, we try to extract meaning out of the provided dataset. We don't have clarity on what to be predicted. So question is why we do this?.. :) Answer is - the outcome of Unsupervised learning is groups/clusters(similar data together). So if we receive any new data then we associate that with the identified cluster/group and understand it's features.

我希望它能帮助你。

我可以给你们举个例子。

假设您需要识别哪些车辆是汽车,哪些是摩托车。

在监督学习的情况下,你的输入(训练)数据集需要被标记,也就是说,对于你的输入(训练)数据集中的每个输入元素,你应该指定它是代表一辆汽车还是一辆摩托车。

在无监督学习的情况下,你不标记输入。无监督模型将输入聚类到基于相似特征/属性的聚类中。所以,在这种情况下,没有像“car”这样的标签。

我一直认为无监督学习和有监督学习之间的区别是随意的,有点令人困惑。这两种情况之间没有真正的区别,相反,在一系列情况下,算法可以或多或少地“监督”。半监督学习的存在是界限模糊的一个明显例子。

我倾向于认为监督是对算法提供关于应该首选哪些解决方案的反馈。对于传统的监督设置,比如垃圾邮件检测,你告诉算法“不要在训练集上犯任何错误”;对于传统的无监督设置,比如聚类,你告诉算法“彼此接近的点应该在同一个聚类中”。很巧的是,第一种反馈形式比后者更具体。

简而言之,当有人说“有监督”时,想想分类,当他们说“无监督”时,想想聚类,尽量不要过于担心除此之外的问题。

在简单 监督学习是一种机器学习问题,其中我们有一些标签,通过使用这些标签,我们实现了回归和分类等算法。分类应用于我们的输出形式类似于 0或1,真/假,是/否。回归是应用于实际价值的地方,比如房价

无监督学习是一种机器学习问题,其中我们没有任何标签,意味着我们只有一些数据,非结构化数据,我们必须使用各种无监督算法对数据进行聚类(数据分组)