在人工智能和机器学习方面,监督学习和无监督学习的区别是什么? 你能举个例子简单地解释一下吗?


当前回答

监督式学习

监督学习是我们知道原始输入的输出,即数据被标记,以便在机器学习模型的训练期间,它将了解它需要在给定的输出中检测什么,并且它将指导系统在训练期间检测预先标记的对象,在此基础上,它将检测我们在训练中提供的类似对象。

在这里,算法将知道数据的结构和模式。监督学习用于分类

例如,我们可以有一个不同的物体,其形状是正方形,圆形,三角形,我们的任务是排列相同类型的形状 标记的数据集已经标记了所有的形状,我们将在该数据集上训练机器学习模型,在训练数据集的基础上,它将开始检测形状。

联合国监管下学习

无监督学习是一种最终结果未知的无指导学习,它将对数据集进行聚类,并基于对象的相似属性将对象划分在不同的簇上并检测对象。

算法将在原始数据中搜索不同的模式,并在此基础上对数据进行聚类。无监督学习用于聚类。

例如,我们可以有多种形状的不同物体,正方形,圆形,三角形,所以它会根据对象属性进行分组,如果一个物体有四个边,它会认为它是正方形,如果它有三个边,三角形,如果没有边比圆形,这里的数据没有标记,它会学习自己检测各种形状

其他回答

监督学习是指你为算法提供的数据被“标记”或“标记”,以帮助你的逻辑做出决策。

示例:贝叶斯垃圾邮件过滤,您必须将一个项目标记为垃圾邮件以优化结果。

无监督学习是一种试图在原始数据之外没有任何外部输入的情况下找到相关性的算法。

例如:数据挖掘聚类算法。

机器学习是一个让机器模仿人类行为的领域。

你训练机器就像训练婴儿一样。人类学习、识别特征、识别模式并训练自己的方式,就像你通过输入各种特征的数据来训练机器一样。机器算法识别数据中的模式,并将其分类到特定的类别。

机器学习大致分为两类,有监督学习和无监督学习。

监督学习是一个概念,你有相应的目标值(输出)的输入向量/数据。另一方面,无监督学习的概念是只有输入向量/数据,没有任何相应的目标值。

监督学习的一个例子是手写数字识别,其中有对应数字[0-9]的数字图像,而非监督学习的一个例子是根据购买行为对客户进行分组。

机器学习: 它探索了可以从数据中学习并对数据进行预测的算法的研究和构建。这种算法通过从示例输入中构建模型来运行,以便做出数据驱动的预测或作为输出表示的决策,而不是严格地遵循静态的程序指令。

监督式学习: 这是从标记的训练数据推断出函数的机器学习任务。训练数据由一组训练示例组成。在监督学习中,每个例子都是一对,由一个输入对象(通常是一个向量)和一个期望的输出值(也称为监督信号)组成。监督学习算法分析训练数据并产生推断函数,该函数可用于映射新的示例。

由“老师”给计算机提供示例输入和它们期望的输出,目标是学习将输入映射到输出的一般规则。具体来说,有监督学习算法采用一组已知的输入数据和对数据(输出)的已知响应,并训练一个模型来生成对新数据响应的合理预测。

Unsupervised learning: It is learning without a teacher. One basic thing that you might want to do with data is to visualize it. It is the machine learning task of inferring a function to describe hidden structure from unlabeled data. Since the examples given to the learner are unlabeled, there is no error or reward signal to evaluate a potential solution. This distinguishes unsupervised learning from supervised learning. Unsupervised learning uses procedures that attempt to find natural partitions of patterns.

在无监督学习中,没有基于预测结果的反馈,也就是说,没有老师来纠正你。在无监督学习方法下,不提供标记的示例,在学习过程中没有输出的概念。因此,由学习方案/模型来寻找模式或发现输入数据的组

你应该使用无监督学习方法,当你需要一个大的 训练你的模型的数据量,以及意愿和能力 去实验和探索,当然这是一个不太好的挑战 通过更成熟的方法解决。无监督学习就是这样 可以学习比监督更大更复杂的模型 学习。这里有一个很好的例子

.

在监督学习中,我们知道输入和输出应该是什么。例如,给定一组汽车。我们得找出哪些是红的,哪些是蓝的。

然而,无监督学习是指我们必须在很少或没有任何关于输出应该如何的想法的情况下找到答案。例如,学习者可以建立一个模型,根据面部模式和单词(如“你在笑什么?”)的相关性来检测人们何时在微笑。

监督式学习

在这种情况下,用于训练网络的每个输入模式都是 与输出模式相关联,它是目标或所需的 模式。在学习过程中假定有老师在场 过程,当对网络的计算结果进行比较时 输出和正确的预期输出,以确定误差。的 错误可以用来更改网络参数,从而导致 性能的提高。

无监督学习

在这种学习方法中,目标输出不会呈现给机器 网络。这就好像没有老师来呈现所渴望的 模式,因此,系统通过发现和学习自己 适应输入模式中的结构特征。