在人工智能和机器学习方面,监督学习和无监督学习的区别是什么? 你能举个例子简单地解释一下吗?
当前回答
我尽量简单点。
监督学习:在这种学习技术中,我们得到一个数据集,系统已经知道该数据集的正确输出。这里,我们的系统通过预测自己的值来学习。然后,它通过使用代价函数来检查其预测与实际输出的接近程度,从而进行准确性检查。
无监督学习:在这种方法中,我们很少或根本不知道我们的结果是什么。因此,我们从不知道变量影响的数据中推导出结构。 我们根据数据中变量之间的关系对数据进行聚类,从而形成结构。 在这里,我们没有基于预测的反馈。
其他回答
监督学习:你给出各种标记的示例数据作为输入,以及正确的答案。该算法将从中学习,并开始根据输入预测正确的结果。示例:电子邮件垃圾邮件过滤器
无监督学习:你只提供数据,不告诉任何东西——比如标签或正确答案。算法自动分析数据中的模式。例如:谷歌新闻
例如,训练神经网络通常是监督学习:你告诉网络你输入的特征向量对应于哪个类。
聚类是无监督学习:你让算法决定如何将样本分组到具有共同属性的类中。
另一个无监督学习的例子是Kohonen的自组织地图。
监督式学习
无监督学习
例子:
监督式学习:
一袋苹果 一个橙色的袋子 =>构建模型 一个混合了苹果和橘子的袋子。 请分类
无监督学习:
一个混合了苹果和橘子的袋子。 =>构建模型 另一个喜忧参半的情况 请分类
监督式学习
在这种情况下,用于训练网络的每个输入模式都是 与输出模式相关联,它是目标或所需的 模式。在学习过程中假定有老师在场 过程,当对网络的计算结果进行比较时 输出和正确的预期输出,以确定误差。的 错误可以用来更改网络参数,从而导致 性能的提高。
无监督学习
在这种学习方法中,目标输出不会呈现给机器 网络。这就好像没有老师来呈现所渴望的 模式,因此,系统通过发现和学习自己 适应输入模式中的结构特征。
监督式学习
你有输入x和目标输出t。所以你训练算法泛化到缺失的部分。它被监督是因为目标是给定的。你是管理员,告诉算法:对于例子x,你应该输出t!
无监督学习
虽然分割、聚类和压缩通常是按照这个方向计算的,但我很难给出一个好的定义。
让我们以自动编码器压缩为例。当你只有给定的输入x时,人类工程师是如何告诉算法目标也是x的。所以在某种意义上,这与监督学习没有什么不同。
对于聚类和分割,我不太确定它是否真的符合机器学习的定义(见其他问题)。
推荐文章
- 如何从scikit-learn决策树中提取决策规则?
- 数据挖掘中分类和聚类的区别?
- model.eval()在pytorch中做什么?
- 为什么binary_crossentropy和categorical_crossentropy对同一个问题给出不同的性能?
- 一般来说,应该选择哪种机器学习分类器?
- 是否可以使用scikit-learn K-Means聚类来指定自己的距离函数?
- 哪些是遗传算法/遗传规划解决方案的好例子?
- 如何在Python中进行热编码?
- 如何将数据分成3组(训练、验证和测试)?
- 历史库存数据的来源
- 如何在PyTorch中初始化权重?
- 关于如何将数据集划分为训练集和验证集,是否存在经验法则?
- 在scikit-learn中保存分类器到磁盘
- 如何解释机器学习模型的损失和准确性
- 线性回归和逻辑回归的区别是什么?