更新:到目前为止表现最好的算法是这个。


这个问题探讨了在实时时间序列数据中检测突然峰值的稳健算法。

考虑以下示例数据:

这个数据的例子是Matlab格式的(但这个问题不是关于语言,而是关于算法):

p = [1 1 1.1 1 0.9 1 1 1.1 1 0.9 1 1.1 1 1 0.9 1 1 1.1 1 1 1 1 1.1 0.9 1 1.1 1 1 0.9, ...
     1 1.1 1 1 1.1 1 0.8 0.9 1 1.2 0.9 1 1 1.1 1.2 1 1.5 1 3 2 5 3 2 1 1 1 0.9 1 1, ... 
     3 2.6 4 3 3.2 2 1 1 0.8 4 4 2 2.5 1 1 1];

你可以清楚地看到有三个大峰和一些小峰。这个数据集是问题所涉及的时间序列数据集类的一个特定示例。这类数据集有两个一般特征:

有一种具有一般平均值的基本噪声 有很大的“峰值”或“更高的数据点”明显偏离噪声。

让我们假设以下情况:

峰的宽度不能事先确定 峰的高度明显偏离其他值 算法实时更新(因此每个新数据点都会更新)

对于这种情况,需要构造一个触发信号的边值。但是,边界值不能是静态的,必须通过算法实时确定。


我的问题是:什么是实时计算这些阈值的好算法?有没有针对这种情况的特定算法?最著名的算法是什么?


健壮的算法或有用的见解都受到高度赞赏。(可以用任何语言回答:这是关于算法的)


当前回答

这种z-scores方法在峰值检测方面非常有效,也有助于异常值的去除。异常值对话经常讨论每个点的统计价值和变化数据的伦理。

但是,在来自易出错的串行通信或易出错的传感器的重复错误传感器值的情况下,错误或虚假读数中没有统计值。它们需要被识别并移除。

从视觉上看,错误是显而易见的。下图中的直线显示了需要删除的内容。但是用算法识别和消除错误是相当具有挑战性的。z分数效果很好。

下图是通过串行通信从传感器获得的值。偶尔的串行通信错误,传感器错误或两者都导致重复的,明显错误的数据点。

z-score峰值检测器能够在虚假数据点上发出信号,并生成一个干净的结果数据集,同时保留正确数据的特征:

其他回答

这是一个Python实现的鲁棒峰值检测算法算法。

初始化和计算部分被分开,只有filtered_y数组被保留,它的最大大小等于延迟,因此内存没有增加。(结果与上述答案相同)。 为了绘制图形,还保留了标签数组。

我做了一个github要点。

import numpy as np
import pylab

def init(x, lag, threshold, influence):
    '''
    Smoothed z-score algorithm
    Implementation of algorithm from https://stackoverflow.com/a/22640362/6029703
    '''

    labels = np.zeros(lag)
    filtered_y = np.array(x[0:lag])
    avg_filter = np.zeros(lag)
    std_filter = np.zeros(lag)
    var_filter = np.zeros(lag)

    avg_filter[lag - 1] = np.mean(x[0:lag])
    std_filter[lag - 1] = np.std(x[0:lag])
    var_filter[lag - 1] = np.var(x[0:lag])

    return dict(avg=avg_filter[lag - 1], var=var_filter[lag - 1],
                std=std_filter[lag - 1], filtered_y=filtered_y,
                labels=labels)


def add(result, single_value, lag, threshold, influence):
    previous_avg = result['avg']
    previous_var = result['var']
    previous_std = result['std']
    filtered_y = result['filtered_y']
    labels = result['labels']

    if abs(single_value - previous_avg) > threshold * previous_std:
        if single_value > previous_avg:
            labels = np.append(labels, 1)
        else:
            labels = np.append(labels, -1)

        # calculate the new filtered element using the influence factor
        filtered_y = np.append(filtered_y, influence * single_value
                               + (1 - influence) * filtered_y[-1])
    else:
        labels = np.append(labels, 0)
        filtered_y = np.append(filtered_y, single_value)

    # update avg as sum of the previuos avg + the lag * (the new calculated item - calculated item at position (i - lag))
    current_avg_filter = previous_avg + 1. / lag * (filtered_y[-1]
            - filtered_y[len(filtered_y) - lag - 1])

    # update variance as the previuos element variance + 1 / lag * new recalculated item - the previous avg -
    current_var_filter = previous_var + 1. / lag * ((filtered_y[-1]
            - previous_avg) ** 2 - (filtered_y[len(filtered_y) - 1
            - lag] - previous_avg) ** 2 - (filtered_y[-1]
            - filtered_y[len(filtered_y) - 1 - lag]) ** 2 / lag)  # the recalculated element at pos (lag) - avg of the previuos - new recalculated element - recalculated element at lag pos ....

    # calculate standard deviation for current element as sqrt (current variance)
    current_std_filter = np.sqrt(current_var_filter)

    return dict(avg=current_avg_filter, var=current_var_filter,
                std=current_std_filter, filtered_y=filtered_y[1:],
                labels=labels)

lag = 30
threshold = 5
influence = 0

y = np.array([1,1,1.1,1,0.9,1,1,1.1,1,0.9,1,1.1,1,1,0.9,1,1,1.1,1,1,1,1,1.1,0.9,1,1.1,1,1,0.9,
       1,1.1,1,1,1.1,1,0.8,0.9,1,1.2,0.9,1,1,1.1,1.2,1,1.5,1,3,2,5,3,2,1,1,1,0.9,1,1,3,
       2.6,4,3,3.2,2,1,1,0.8,4,4,2,2.5,1,1,1])

# Run algo with settings from above
result = init(y[:lag], lag=lag, threshold=threshold, influence=influence)

i = open('quartz2', 'r')
for i in y[lag:]:
    result = add(result, i, lag, threshold, influence)

# Plot result
pylab.subplot(211)
pylab.plot(np.arange(1, len(y) + 1), y)
pylab.subplot(212)
pylab.step(np.arange(1, len(y) + 1), result['labels'], color='red',
           lw=2)
pylab.ylim(-1.5, 1.5)
pylab.show()

原文的附录1:Matlab和R翻译

Matlab代码

function [signals,avgFilter,stdFilter] = ThresholdingAlgo(y,lag,threshold,influence)
% Initialise signal results
signals = zeros(length(y),1);
% Initialise filtered series
filteredY = y(1:lag+1);
% Initialise filters
avgFilter(lag+1,1) = mean(y(1:lag+1));
stdFilter(lag+1,1) = std(y(1:lag+1));
% Loop over all datapoints y(lag+2),...,y(t)
for i=lag+2:length(y)
    % If new value is a specified number of deviations away
    if abs(y(i)-avgFilter(i-1)) > threshold*stdFilter(i-1)
        if y(i) > avgFilter(i-1)
            % Positive signal
            signals(i) = 1;
        else
            % Negative signal
            signals(i) = -1;
        end
        % Make influence lower
        filteredY(i) = influence*y(i)+(1-influence)*filteredY(i-1);
    else
        % No signal
        signals(i) = 0;
        filteredY(i) = y(i);
    end
    % Adjust the filters
    avgFilter(i) = mean(filteredY(i-lag:i));
    stdFilter(i) = std(filteredY(i-lag:i));
end
% Done, now return results
end

例子:

% Data
y = [1 1 1.1 1 0.9 1 1 1.1 1 0.9 1 1.1 1 1 0.9 1 1 1.1 1 1,...
    1 1 1.1 0.9 1 1.1 1 1 0.9 1 1.1 1 1 1.1 1 0.8 0.9 1 1.2 0.9 1,...
    1 1.1 1.2 1 1.5 1 3 2 5 3 2 1 1 1 0.9 1,...
    1 3 2.6 4 3 3.2 2 1 1 0.8 4 4 2 2.5 1 1 1];

% Settings
lag = 30;
threshold = 5;
influence = 0;

% Get results
[signals,avg,dev] = ThresholdingAlgo(y,lag,threshold,influence);

figure; subplot(2,1,1); hold on;
x = 1:length(y); ix = lag+1:length(y);
area(x(ix),avg(ix)+threshold*dev(ix),'FaceColor',[0.9 0.9 0.9],'EdgeColor','none');
area(x(ix),avg(ix)-threshold*dev(ix),'FaceColor',[1 1 1],'EdgeColor','none');
plot(x(ix),avg(ix),'LineWidth',1,'Color','cyan','LineWidth',1.5);
plot(x(ix),avg(ix)+threshold*dev(ix),'LineWidth',1,'Color','green','LineWidth',1.5);
plot(x(ix),avg(ix)-threshold*dev(ix),'LineWidth',1,'Color','green','LineWidth',1.5);
plot(1:length(y),y,'b');
subplot(2,1,2);
stairs(signals,'r','LineWidth',1.5); ylim([-1.5 1.5]);

R代码

ThresholdingAlgo <- function(y,lag,threshold,influence) {
  signals <- rep(0,length(y))
  filteredY <- y[0:lag]
  avgFilter <- NULL
  stdFilter <- NULL
  avgFilter[lag] <- mean(y[0:lag], na.rm=TRUE)
  stdFilter[lag] <- sd(y[0:lag], na.rm=TRUE)
  for (i in (lag+1):length(y)){
    if (abs(y[i]-avgFilter[i-1]) > threshold*stdFilter[i-1]) {
      if (y[i] > avgFilter[i-1]) {
        signals[i] <- 1;
      } else {
        signals[i] <- -1;
      }
      filteredY[i] <- influence*y[i]+(1-influence)*filteredY[i-1]
    } else {
      signals[i] <- 0
      filteredY[i] <- y[i]
    }
    avgFilter[i] <- mean(filteredY[(i-lag):i], na.rm=TRUE)
    stdFilter[i] <- sd(filteredY[(i-lag):i], na.rm=TRUE)
  }
  return(list("signals"=signals,"avgFilter"=avgFilter,"stdFilter"=stdFilter))
}

例子:

# Data
y <- c(1,1,1.1,1,0.9,1,1,1.1,1,0.9,1,1.1,1,1,0.9,1,1,1.1,1,1,1,1,1.1,0.9,1,1.1,1,1,0.9,
       1,1.1,1,1,1.1,1,0.8,0.9,1,1.2,0.9,1,1,1.1,1.2,1,1.5,1,3,2,5,3,2,1,1,1,0.9,1,1,3,
       2.6,4,3,3.2,2,1,1,0.8,4,4,2,2.5,1,1,1)

lag       <- 30
threshold <- 5
influence <- 0

# Run algo with lag = 30, threshold = 5, influence = 0
result <- ThresholdingAlgo(y,lag,threshold,influence)

# Plot result
par(mfrow = c(2,1),oma = c(2,2,0,0) + 0.1,mar = c(0,0,2,1) + 0.2)
plot(1:length(y),y,type="l",ylab="",xlab="") 
lines(1:length(y),result$avgFilter,type="l",col="cyan",lwd=2)
lines(1:length(y),result$avgFilter+threshold*result$stdFilter,type="l",col="green",lwd=2)
lines(1:length(y),result$avgFilter-threshold*result$stdFilter,type="l",col="green",lwd=2)
plot(result$signals,type="S",col="red",ylab="",xlab="",ylim=c(-1.5,1.5),lwd=2)

这段代码(两种语言)将为原始问题的数据产生以下结果:


附录2原答案:Matlab演示代码

(点击创建数据)

function [] = RobustThresholdingDemo()

%% SPECIFICATIONS
lag         = 5;       % lag for the smoothing
threshold   = 3.5;     % number of st.dev. away from the mean to signal
influence   = 0.3;     % when signal: how much influence for new data? (between 0 and 1)
                       % 1 is normal influence, 0.5 is half      
%% START DEMO
DemoScreen(30,lag,threshold,influence);

end

function [signals,avgFilter,stdFilter] = ThresholdingAlgo(y,lag,threshold,influence)
signals = zeros(length(y),1);
filteredY = y(1:lag+1);
avgFilter(lag+1,1) = mean(y(1:lag+1));
stdFilter(lag+1,1) = std(y(1:lag+1));
for i=lag+2:length(y)
    if abs(y(i)-avgFilter(i-1)) > threshold*stdFilter(i-1)
        if y(i) > avgFilter(i-1)
            signals(i) = 1;
        else
            signals(i) = -1;
        end
        filteredY(i) = influence*y(i)+(1-influence)*filteredY(i-1);
    else
        signals(i) = 0;
        filteredY(i) = y(i);
    end
    avgFilter(i) = mean(filteredY(i-lag:i));
    stdFilter(i) = std(filteredY(i-lag:i));
end
end

% Demo screen function
function [] = DemoScreen(n,lag,threshold,influence)
figure('Position',[200 100,1000,500]);
subplot(2,1,1);
title(sprintf(['Draw data points (%.0f max)      [settings: lag = %.0f, '...
    'threshold = %.2f, influence = %.2f]'],n,lag,threshold,influence));
ylim([0 5]); xlim([0 50]);
H = gca; subplot(2,1,1);
set(H, 'YLimMode', 'manual'); set(H, 'XLimMode', 'manual');
set(H, 'YLim', get(H,'YLim')); set(H, 'XLim', get(H,'XLim'));
xg = []; yg = [];
for i=1:n
    try
        [xi,yi] = ginput(1);
    catch
        return;
    end
    xg = [xg xi]; yg = [yg yi];
    if i == 1
        subplot(2,1,1); hold on;
        plot(H, xg(i),yg(i),'r.'); 
        text(xg(i),yg(i),num2str(i),'FontSize',7);
    end
    if length(xg) > lag
        [signals,avg,dev] = ...
            ThresholdingAlgo(yg,lag,threshold,influence);
        area(xg(lag+1:end),avg(lag+1:end)+threshold*dev(lag+1:end),...
            'FaceColor',[0.9 0.9 0.9],'EdgeColor','none');
        area(xg(lag+1:end),avg(lag+1:end)-threshold*dev(lag+1:end),...
            'FaceColor',[1 1 1],'EdgeColor','none');
        plot(xg(lag+1:end),avg(lag+1:end),'LineWidth',1,'Color','cyan');
        plot(xg(lag+1:end),avg(lag+1:end)+threshold*dev(lag+1:end),...
            'LineWidth',1,'Color','green');
        plot(xg(lag+1:end),avg(lag+1:end)-threshold*dev(lag+1:end),...
            'LineWidth',1,'Color','green');
        subplot(2,1,2); hold on; title('Signal output');
        stairs(xg(lag+1:end),signals(lag+1:end),'LineWidth',2,'Color','blue');
        ylim([-2 2]); xlim([0 50]); hold off;
    end
    subplot(2,1,1); hold on;
    for j=2:i
        plot(xg([j-1:j]),yg([j-1:j]),'r'); plot(H,xg(j),yg(j),'r.');
        text(xg(j),yg(j),num2str(j),'FontSize',7);
    end
end
end

一种方法是根据以下观察来检测峰:

时间t是一个峰值(y (t) > y (t - 1)) & & ((t) > y (t + 1))

它通过等待上升趋势结束来避免误报。它并不完全是“实时”的,因为它会比峰值差一个dt。灵敏度可以通过要求比较的裕度来控制。在噪声检测和时延检测之间存在一种折衷。 您可以通过添加更多参数来丰富模型:

峰如果y (y (t) - (t-dt) > m) && (y (t) - y (t + dt) > m)

dt和m是控制灵敏度和延时的参数

这是你用上述算法得到的结果:

下面是在python中重现图的代码:

import numpy as np
import matplotlib.pyplot as plt
input = np.array([ 1. ,  1. ,  1. ,  1. ,  1. ,  1. ,  1. ,  1.1,  1. ,  0.8,  0.9,
    1. ,  1.2,  0.9,  1. ,  1. ,  1.1,  1.2,  1. ,  1.5,  1. ,  3. ,
    2. ,  5. ,  3. ,  2. ,  1. ,  1. ,  1. ,  0.9,  1. ,  1. ,  3. ,
    2.6,  4. ,  3. ,  3.2,  2. ,  1. ,  1. ,  1. ,  1. ,  1. ])
signal = (input > np.roll(input,1)) & (input > np.roll(input,-1))
plt.plot(input)
plt.plot(signal.nonzero()[0], input[signal], 'ro')
plt.show()

通过设置m = 0.5,你可以得到一个更清晰的信号,只有一个假阳性:

c++实现

#include <iostream>
#include <vector>
#include <algorithm>
#include <unordered_map>
#include <cmath>
#include <iterator>
#include <numeric>

using namespace std;

typedef long double ld;
typedef unsigned int uint;
typedef std::vector<ld>::iterator vec_iter_ld;

/**
 * Overriding the ostream operator for pretty printing vectors.
 */
template<typename T>
std::ostream &operator<<(std::ostream &os, std::vector<T> vec) {
    os << "[";
    if (vec.size() != 0) {
        std::copy(vec.begin(), vec.end() - 1, std::ostream_iterator<T>(os, " "));
        os << vec.back();
    }
    os << "]";
    return os;
}

/**
 * This class calculates mean and standard deviation of a subvector.
 * This is basically stats computation of a subvector of a window size qual to "lag".
 */
class VectorStats {
public:
    /**
     * Constructor for VectorStats class.
     *
     * @param start - This is the iterator position of the start of the window,
     * @param end   - This is the iterator position of the end of the window,
     */
    VectorStats(vec_iter_ld start, vec_iter_ld end) {
        this->start = start;
        this->end = end;
        this->compute();
    }

    /**
     * This method calculates the mean and standard deviation using STL function.
     * This is the Two-Pass implementation of the Mean & Variance calculation.
     */
    void compute() {
        ld sum = std::accumulate(start, end, 0.0);
        uint slice_size = std::distance(start, end);
        ld mean = sum / slice_size;
        std::vector<ld> diff(slice_size);
        std::transform(start, end, diff.begin(), [mean](ld x) { return x - mean; });
        ld sq_sum = std::inner_product(diff.begin(), diff.end(), diff.begin(), 0.0);
        ld std_dev = std::sqrt(sq_sum / slice_size);

        this->m1 = mean;
        this->m2 = std_dev;
    }

    ld mean() {
        return m1;
    }

    ld standard_deviation() {
        return m2;
    }

private:
    vec_iter_ld start;
    vec_iter_ld end;
    ld m1;
    ld m2;
};

/**
 * This is the implementation of the Smoothed Z-Score Algorithm.
 * This is direction translation of https://stackoverflow.com/a/22640362/1461896.
 *
 * @param input - input signal
 * @param lag - the lag of the moving window
 * @param threshold - the z-score at which the algorithm signals
 * @param influence - the influence (between 0 and 1) of new signals on the mean and standard deviation
 * @return a hashmap containing the filtered signal and corresponding mean and standard deviation.
 */
unordered_map<string, vector<ld>> z_score_thresholding(vector<ld> input, int lag, ld threshold, ld influence) {
    unordered_map<string, vector<ld>> output;

    uint n = (uint) input.size();
    vector<ld> signals(input.size());
    vector<ld> filtered_input(input.begin(), input.end());
    vector<ld> filtered_mean(input.size());
    vector<ld> filtered_stddev(input.size());

    VectorStats lag_subvector_stats(input.begin(), input.begin() + lag);
    filtered_mean[lag - 1] = lag_subvector_stats.mean();
    filtered_stddev[lag - 1] = lag_subvector_stats.standard_deviation();

    for (int i = lag; i < n; i++) {
        if (abs(input[i] - filtered_mean[i - 1]) > threshold * filtered_stddev[i - 1]) {
            signals[i] = (input[i] > filtered_mean[i - 1]) ? 1.0 : -1.0;
            filtered_input[i] = influence * input[i] + (1 - influence) * filtered_input[i - 1];
        } else {
            signals[i] = 0.0;
            filtered_input[i] = input[i];
        }
        VectorStats lag_subvector_stats(filtered_input.begin() + (i - lag), filtered_input.begin() + i);
        filtered_mean[i] = lag_subvector_stats.mean();
        filtered_stddev[i] = lag_subvector_stats.standard_deviation();
    }

    output["signals"] = signals;
    output["filtered_mean"] = filtered_mean;
    output["filtered_stddev"] = filtered_stddev;

    return output;
};

int main() {
    vector<ld> input = {1.0, 1.0, 1.1, 1.0, 0.9, 1.0, 1.0, 1.1, 1.0, 0.9, 1.0, 1.1, 1.0, 1.0, 0.9, 1.0, 1.0, 1.1, 1.0,
                        1.0, 1.0, 1.0, 1.1, 0.9, 1.0, 1.1, 1.0, 1.0, 0.9, 1.0, 1.1, 1.0, 1.0, 1.1, 1.0, 0.8, 0.9, 1.0,
                        1.2, 0.9, 1.0, 1.0, 1.1, 1.2, 1.0, 1.5, 1.0, 3.0, 2.0, 5.0, 3.0, 2.0, 1.0, 1.0, 1.0, 0.9, 1.0,
                        1.0, 3.0, 2.6, 4.0, 3.0, 3.2, 2.0, 1.0, 1.0, 0.8, 4.0, 4.0, 2.0, 2.5, 1.0, 1.0, 1.0};

    int lag = 30;
    ld threshold = 5.0;
    ld influence = 0.0;
    unordered_map<string, vector<ld>> output = z_score_thresholding(input, lag, threshold, influence);
    cout << output["signals"] << endl;
}

不需要将极大值与平均值进行比较,还可以将极大值与相邻的最小值进行比较,其中最小值仅定义在噪声阈值之上。 如果局部最大值是>的3倍(或其他置信因子)相邻的最小值,那么这个最大值就是一个峰值。 移动窗口越宽,峰值的确定越准确。 上面使用了以窗口中间为中心的计算, 顺便说一下,而不是在窗口结束时计算(== lag)。

请注意,最大值必须被视为信号之前的增加 之后下降。