更新:到目前为止表现最好的算法是这个。


这个问题探讨了在实时时间序列数据中检测突然峰值的稳健算法。

考虑以下示例数据:

这个数据的例子是Matlab格式的(但这个问题不是关于语言,而是关于算法):

p = [1 1 1.1 1 0.9 1 1 1.1 1 0.9 1 1.1 1 1 0.9 1 1 1.1 1 1 1 1 1.1 0.9 1 1.1 1 1 0.9, ...
     1 1.1 1 1 1.1 1 0.8 0.9 1 1.2 0.9 1 1 1.1 1.2 1 1.5 1 3 2 5 3 2 1 1 1 0.9 1 1, ... 
     3 2.6 4 3 3.2 2 1 1 0.8 4 4 2 2.5 1 1 1];

你可以清楚地看到有三个大峰和一些小峰。这个数据集是问题所涉及的时间序列数据集类的一个特定示例。这类数据集有两个一般特征:

有一种具有一般平均值的基本噪声 有很大的“峰值”或“更高的数据点”明显偏离噪声。

让我们假设以下情况:

峰的宽度不能事先确定 峰的高度明显偏离其他值 算法实时更新(因此每个新数据点都会更新)

对于这种情况,需要构造一个触发信号的边值。但是,边界值不能是静态的,必须通过算法实时确定。


我的问题是:什么是实时计算这些阈值的好算法?有没有针对这种情况的特定算法?最著名的算法是什么?


健壮的算法或有用的见解都受到高度赞赏。(可以用任何语言回答:这是关于算法的)


当前回答

这种z-scores方法在峰值检测方面非常有效,也有助于异常值的去除。异常值对话经常讨论每个点的统计价值和变化数据的伦理。

但是,在来自易出错的串行通信或易出错的传感器的重复错误传感器值的情况下,错误或虚假读数中没有统计值。它们需要被识别并移除。

从视觉上看,错误是显而易见的。下图中的直线显示了需要删除的内容。但是用算法识别和消除错误是相当具有挑战性的。z分数效果很好。

下图是通过串行通信从传感器获得的值。偶尔的串行通信错误,传感器错误或两者都导致重复的,明显错误的数据点。

z-score峰值检测器能够在虚假数据点上发出信号,并生成一个干净的结果数据集,同时保留正确数据的特征:

其他回答

下面是平滑z-score算法的Python / numpy实现(见上面的答案)。你可以在这里找到要点。

#!/usr/bin/env python
# Implementation of algorithm from https://stackoverflow.com/a/22640362/6029703
import numpy as np
import pylab

def thresholding_algo(y, lag, threshold, influence):
    signals = np.zeros(len(y))
    filteredY = np.array(y)
    avgFilter = [0]*len(y)
    stdFilter = [0]*len(y)
    avgFilter[lag - 1] = np.mean(y[0:lag])
    stdFilter[lag - 1] = np.std(y[0:lag])
    for i in range(lag, len(y)):
        if abs(y[i] - avgFilter[i-1]) > threshold * stdFilter [i-1]:
            if y[i] > avgFilter[i-1]:
                signals[i] = 1
            else:
                signals[i] = -1

            filteredY[i] = influence * y[i] + (1 - influence) * filteredY[i-1]
            avgFilter[i] = np.mean(filteredY[(i-lag+1):i+1])
            stdFilter[i] = np.std(filteredY[(i-lag+1):i+1])
        else:
            signals[i] = 0
            filteredY[i] = y[i]
            avgFilter[i] = np.mean(filteredY[(i-lag+1):i+1])
            stdFilter[i] = np.std(filteredY[(i-lag+1):i+1])

    return dict(signals = np.asarray(signals),
                avgFilter = np.asarray(avgFilter),
                stdFilter = np.asarray(stdFilter))

下面是在同一个数据集上的测试,它产生的图与R/Matlab的原始答案相同

# Data
y = np.array([1,1,1.1,1,0.9,1,1,1.1,1,0.9,1,1.1,1,1,0.9,1,1,1.1,1,1,1,1,1.1,0.9,1,1.1,1,1,0.9,
       1,1.1,1,1,1.1,1,0.8,0.9,1,1.2,0.9,1,1,1.1,1.2,1,1.5,1,3,2,5,3,2,1,1,1,0.9,1,1,3,
       2.6,4,3,3.2,2,1,1,0.8,4,4,2,2.5,1,1,1])

# Settings: lag = 30, threshold = 5, influence = 0
lag = 30
threshold = 5
influence = 0

# Run algo with settings from above
result = thresholding_algo(y, lag=lag, threshold=threshold, influence=influence)

# Plot result
pylab.subplot(211)
pylab.plot(np.arange(1, len(y)+1), y)

pylab.plot(np.arange(1, len(y)+1),
           result["avgFilter"], color="cyan", lw=2)

pylab.plot(np.arange(1, len(y)+1),
           result["avgFilter"] + threshold * result["stdFilter"], color="green", lw=2)

pylab.plot(np.arange(1, len(y)+1),
           result["avgFilter"] - threshold * result["stdFilter"], color="green", lw=2)

pylab.subplot(212)
pylab.step(np.arange(1, len(y)+1), result["signals"], color="red", lw=2)
pylab.ylim(-1.5, 1.5)
pylab.show()

以下是平滑z-score算法的Scala版本(非惯用):

/**
  * Smoothed zero-score alogrithm shamelessly copied from https://stackoverflow.com/a/22640362/6029703
  * Uses a rolling mean and a rolling deviation (separate) to identify peaks in a vector
  *
  * @param y - The input vector to analyze
  * @param lag - The lag of the moving window (i.e. how big the window is)
  * @param threshold - The z-score at which the algorithm signals (i.e. how many standard deviations away from the moving mean a peak (or signal) is)
  * @param influence - The influence (between 0 and 1) of new signals on the mean and standard deviation (how much a peak (or signal) should affect other values near it)
  * @return - The calculated averages (avgFilter) and deviations (stdFilter), and the signals (signals)
  */
private def smoothedZScore(y: Seq[Double], lag: Int, threshold: Double, influence: Double): Seq[Int] = {
  val stats = new SummaryStatistics()

  // the results (peaks, 1 or -1) of our algorithm
  val signals = mutable.ArrayBuffer.fill(y.length)(0)

  // filter out the signals (peaks) from our original list (using influence arg)
  val filteredY = y.to[mutable.ArrayBuffer]

  // the current average of the rolling window
  val avgFilter = mutable.ArrayBuffer.fill(y.length)(0d)

  // the current standard deviation of the rolling window
  val stdFilter = mutable.ArrayBuffer.fill(y.length)(0d)

  // init avgFilter and stdFilter
  y.take(lag).foreach(s => stats.addValue(s))

  avgFilter(lag - 1) = stats.getMean
  stdFilter(lag - 1) = Math.sqrt(stats.getPopulationVariance) // getStandardDeviation() uses sample variance (not what we want)

  // loop input starting at end of rolling window
  y.zipWithIndex.slice(lag, y.length - 1).foreach {
    case (s: Double, i: Int) =>
      // if the distance between the current value and average is enough standard deviations (threshold) away
      if (Math.abs(s - avgFilter(i - 1)) > threshold * stdFilter(i - 1)) {
        // this is a signal (i.e. peak), determine if it is a positive or negative signal
        signals(i) = if (s > avgFilter(i - 1)) 1 else -1
        // filter this signal out using influence
        filteredY(i) = (influence * s) + ((1 - influence) * filteredY(i - 1))
      } else {
        // ensure this signal remains a zero
        signals(i) = 0
        // ensure this value is not filtered
        filteredY(i) = s
      }

      // update rolling average and deviation
      stats.clear()
      filteredY.slice(i - lag, i).foreach(s => stats.addValue(s))
      avgFilter(i) = stats.getMean
      stdFilter(i) = Math.sqrt(stats.getPopulationVariance) // getStandardDeviation() uses sample variance (not what we want)
  }

  println(y.length)
  println(signals.length)
  println(signals)

  signals.zipWithIndex.foreach {
    case(x: Int, idx: Int) =>
      if (x == 1) {
        println(idx + " " + y(idx))
      }
  }

  val data =
    y.zipWithIndex.map { case (s: Double, i: Int) => Map("x" -> i, "y" -> s, "name" -> "y", "row" -> "data") } ++
    avgFilter.zipWithIndex.map { case (s: Double, i: Int) => Map("x" -> i, "y" -> s, "name" -> "avgFilter", "row" -> "data") } ++
    avgFilter.zipWithIndex.map { case (s: Double, i: Int) => Map("x" -> i, "y" -> (s - threshold * stdFilter(i)), "name" -> "lower", "row" -> "data") } ++
    avgFilter.zipWithIndex.map { case (s: Double, i: Int) => Map("x" -> i, "y" -> (s + threshold * stdFilter(i)), "name" -> "upper", "row" -> "data") } ++
    signals.zipWithIndex.map { case (s: Int, i: Int) => Map("x" -> i, "y" -> s, "name" -> "signal", "row" -> "signal") }

  Vegas("Smoothed Z")
    .withData(data)
    .mark(Line)
    .encodeX("x", Quant)
    .encodeY("y", Quant)
    .encodeColor(
      field="name",
      dataType=Nominal
    )
    .encodeRow("row", Ordinal)
    .show

  return signals
}

下面是一个测试,返回与Python和Groovy版本相同的结果:

val y = List(1d, 1d, 1.1d, 1d, 0.9d, 1d, 1d, 1.1d, 1d, 0.9d, 1d, 1.1d, 1d, 1d, 0.9d, 1d, 1d, 1.1d, 1d, 1d,
  1d, 1d, 1.1d, 0.9d, 1d, 1.1d, 1d, 1d, 0.9d, 1d, 1.1d, 1d, 1d, 1.1d, 1d, 0.8d, 0.9d, 1d, 1.2d, 0.9d, 1d,
  1d, 1.1d, 1.2d, 1d, 1.5d, 1d, 3d, 2d, 5d, 3d, 2d, 1d, 1d, 1d, 0.9d, 1d,
  1d, 3d, 2.6d, 4d, 3d, 3.2d, 2d, 1d, 1d, 0.8d, 4d, 4d, 2d, 2.5d, 1d, 1d, 1d)

val lag = 30
val threshold = 5d
val influence = 0d

smoothedZScore(y, lag, threshold, influence)

这里的要点

使用实时流的Python版本(不会在每个新数据点到达时重新计算所有数据点)。您可能想要调整类函数返回的内容—对于我的目的,我只需要信号。

import numpy as np


class real_time_peak_detection():
    def __init__(self, array, lag, threshold, influence):
        self.y = list(array)
        self.length = len(self.y)
        self.lag = lag
        self.threshold = threshold
        self.influence = influence
        self.signals = [0] * len(self.y)
        self.filteredY = np.array(self.y).tolist()
        self.avgFilter = [0] * len(self.y)
        self.stdFilter = [0] * len(self.y)
        self.avgFilter[self.lag - 1] = np.mean(self.y[0:self.lag]).tolist()
        self.stdFilter[self.lag - 1] = np.std(self.y[0:self.lag]).tolist()

    def thresholding_algo(self, new_value):
        self.y.append(new_value)
        i = len(self.y) - 1
        self.length = len(self.y)
        if i < self.lag:
            return 0
        elif i == self.lag:
            self.signals = [0] * len(self.y)
            self.filteredY = np.array(self.y).tolist()
            self.avgFilter = [0] * len(self.y)
            self.stdFilter = [0] * len(self.y)
            self.avgFilter[self.lag] = np.mean(self.y[0:self.lag]).tolist()
            self.stdFilter[self.lag] = np.std(self.y[0:self.lag]).tolist()
            return 0

        self.signals += [0]
        self.filteredY += [0]
        self.avgFilter += [0]
        self.stdFilter += [0]

        if abs(self.y[i] - self.avgFilter[i - 1]) > (self.threshold * self.stdFilter[i - 1]):

            if self.y[i] > self.avgFilter[i - 1]:
                self.signals[i] = 1
            else:
                self.signals[i] = -1

            self.filteredY[i] = self.influence * self.y[i] + \
                (1 - self.influence) * self.filteredY[i - 1]
            self.avgFilter[i] = np.mean(self.filteredY[(i - self.lag):i])
            self.stdFilter[i] = np.std(self.filteredY[(i - self.lag):i])
        else:
            self.signals[i] = 0
            self.filteredY[i] = self.y[i]
            self.avgFilter[i] = np.mean(self.filteredY[(i - self.lag):i])
            self.stdFilter[i] = np.std(self.filteredY[(i - self.lag):i])

        return self.signals[i]

假设你的数据来自传感器(所以算法不可能知道未来的任何事情),

我做了这个算法,它与我在自己的项目中获得的数据非常好。

该算法有2个参数:灵敏度和窗口。

最后,只需一行代码就可以得到你的结果:

detected=data.map((a, b, c) => (a > 0) ? c[b] ** 4 * c[b - 1] ** 3 : -0).map((a, b, c) => a > Math.max(...c.slice(2)) / sensitivity).map((a, b, c) => (b > dwindow) && c.slice(b - dwindow, b).indexOf(a) == -1);

因为我是程序员而不是数学家,所以我不能更好地解释它。但我相信有人可以。

sensitivity = 20; dwindow = 4; data = [1., 1., 1., 1., 1., 1., 1., 1.1, 1., 0.8, 0.9, 1., 1.2, 0.9, 1., 1., 1.1, 1.2, 1., 1.5, 1., 3., 2., 5., 3., 2., 1., 1., 1., 0.9, 1., 1., 3., 2.6, 4., 3., 3.2, 2., 1., 1., 1., 1., 1. ]; //data = data.concat(data); //data = data.concat(data); var data1 = [{ name: 'original source', y: data }]; Plotly.newPlot('stage1', data1, { title: 'Sensor data', yaxis: { title: 'signal' } }); filtered = data.map((a, b, c) => (a > 0) ? c[b] ** 4 * c[b - 1] ** 3 : -0); var data2 = [{ name: 'filtered source', y: filtered }]; Plotly.newPlot('stage2', data2, { title: 'Filtered data<br>aₙ = aₙ⁴ * aₙ₋₁³', yaxis: { title: 'signal' } }); dwindow = 6; k = dwindow; detected = filtered.map((a, b, c) => a > Math.max(...c.slice(2)) / sensitivity).map((a, b, c) => (b > k) && c.slice(b - k, b).indexOf(a) == -1) var data3 = [{ name: 'detected peaks', y: detected }]; Plotly.newPlot('stage3', data3, { title: 'Window 6', yaxis: { title: 'signal' } }); dwindow = 10; k = dwindow; detected = filtered.map((a, b, c) => a > Math.max(...c.slice(2)) / 20).map((a, b, c) => (b > k) && c.slice(b - k, b).indexOf(a) == -1) var data4 = [{ name: 'detected peaks', y: detected }]; Plotly.newPlot('stage4', data4, { title: 'Window 10', yaxis: { title: 'signal' } }); <script src="https://cdn.jsdelivr.net/npm/plotly.js@2.16.5/dist/plotly.min.js"></script> <div id="stage1"></div> <div id="stage2"></div> <div id="stage3"></div> <div id="stage4"></div>

@Jean-Paul算法的Perl实现。

#!/usr/bin/perl

use strict;
use Data::Dumper;

sub mean {
    my $data = shift;
    my $sum = 0;
    my $mean_val = 0;
    for my $item (@$data) {
        $sum += $item;
    }
    $mean_val = $sum / (scalar @$data) if @$data;
    return $mean_val;
}

sub variance {
    my $data = shift;
    my $variance_val = 0;
    my $mean_val = mean($data);
    my $sum = 0;
    for my $item (@$data) {
        $sum += ($item - $mean_val)**2;
    }
    $variance_val = $sum / (scalar @$data) if @$data;
    return $variance_val;
}

sub std {
    my $data = shift;
    my $variance_val = variance($data);
    return sqrt($variance_val);
}

# @param y - The input vector to analyze
# @parameter lag - The lag of the moving window
# @parameter threshold - The z-score at which the algorithm signals
# @parameter influence - The influence (between 0 and 1) of new signals on the mean and standard deviation
sub thresholding_algo {
    my ($y, $lag, $threshold, $influence) = @_;

    my @signals = (0) x @$y;
    my @filteredY = @$y;
    my @avgFilter = (0) x @$y;
    my @stdFilter = (0) x @$y;

    $avgFilter[$lag - 1] = mean([@$y[0..$lag-1]]);
    $stdFilter[$lag - 1] = std([@$y[0..$lag-1]]);

    for (my $i=$lag; $i <= @$y - 1; $i++) {
        if (abs($y->[$i] - $avgFilter[$i-1]) > $threshold * $stdFilter[$i-1]) {
            if ($y->[$i] > $avgFilter[$i-1]) {
                $signals[$i] = 1;
            } else {
                $signals[$i] = -1;
            }

            $filteredY[$i] = $influence * $y->[$i] + (1 - $influence) * $filteredY[$i-1];
            $avgFilter[$i] = mean([@filteredY[($i-$lag)..($i-1)]]);
            $stdFilter[$i] = std([@filteredY[($i-$lag)..($i-1)]]);
        }
        else {
            $signals[$i] = 0;
            $filteredY[$i] = $y->[$i];
            $avgFilter[$i] = mean([@filteredY[($i-$lag)..($i-1)]]);
            $stdFilter[$i] = std([@filteredY[($i-$lag)..($i-1)]]);
        }
    }

    return {
        signals => \@signals,
        avgFilter => \@avgFilter,
        stdFilter => \@stdFilter
    };
}

my $y = [1,1,1.1,1,0.9,1,1,1.1,1,0.9,1,1.1,1,1,0.9,1,1,1.1,1,1,1,1,1.1,0.9,1,1.1,1,1,0.9,
       1,1.1,1,1,1.1,1,0.8,0.9,1,1.2,0.9,1,1,1.1,1.2,1,1.5,1,3,2,5,3,2,1,1,1,0.9,1,1,3,
       2.6,4,3,3.2,2,1,1,0.8,4,4,2,2.5,1,1,1];

my $lag = 30;
my $threshold = 5;
my $influence = 0;

my $result = thresholding_algo($y, $lag, $threshold, $influence);

print Dumper $result;