更新:到目前为止表现最好的算法是这个。


这个问题探讨了在实时时间序列数据中检测突然峰值的稳健算法。

考虑以下示例数据:

这个数据的例子是Matlab格式的(但这个问题不是关于语言,而是关于算法):

p = [1 1 1.1 1 0.9 1 1 1.1 1 0.9 1 1.1 1 1 0.9 1 1 1.1 1 1 1 1 1.1 0.9 1 1.1 1 1 0.9, ...
     1 1.1 1 1 1.1 1 0.8 0.9 1 1.2 0.9 1 1 1.1 1.2 1 1.5 1 3 2 5 3 2 1 1 1 0.9 1 1, ... 
     3 2.6 4 3 3.2 2 1 1 0.8 4 4 2 2.5 1 1 1];

你可以清楚地看到有三个大峰和一些小峰。这个数据集是问题所涉及的时间序列数据集类的一个特定示例。这类数据集有两个一般特征:

有一种具有一般平均值的基本噪声 有很大的“峰值”或“更高的数据点”明显偏离噪声。

让我们假设以下情况:

峰的宽度不能事先确定 峰的高度明显偏离其他值 算法实时更新(因此每个新数据点都会更新)

对于这种情况,需要构造一个触发信号的边值。但是,边界值不能是静态的,必须通过算法实时确定。


我的问题是:什么是实时计算这些阈值的好算法?有没有针对这种情况的特定算法?最著名的算法是什么?


健壮的算法或有用的见解都受到高度赞赏。(可以用任何语言回答:这是关于算法的)


当前回答

一个python/numpy的迭代版本的答案https://stackoverflow.com/a/22640362/6029703在这里。对于大数据(100000+),此代码比计算平均和标准偏差的速度更快。

def peak_detection_smoothed_zscore_v2(x, lag, threshold, influence):
    '''
    iterative smoothed z-score algorithm
    Implementation of algorithm from https://stackoverflow.com/a/22640362/6029703
    '''
    import numpy as np
    labels = np.zeros(len(x))
    filtered_y = np.array(x)
    avg_filter = np.zeros(len(x))
    std_filter = np.zeros(len(x))
    var_filter = np.zeros(len(x))

    avg_filter[lag - 1] = np.mean(x[0:lag])
    std_filter[lag - 1] = np.std(x[0:lag])
    var_filter[lag - 1] = np.var(x[0:lag])
    for i in range(lag, len(x)):
        if abs(x[i] - avg_filter[i - 1]) > threshold * std_filter[i - 1]:
            if x[i] > avg_filter[i - 1]:
                labels[i] = 1
            else:
                labels[i] = -1
            filtered_y[i] = influence * x[i] + (1 - influence) * filtered_y[i - 1]
        else:
            labels[i] = 0
            filtered_y[i] = x[i]
        # update avg, var, std
        avg_filter[i] = avg_filter[i - 1] + 1. / lag * (filtered_y[i] - filtered_y[i - lag])
        var_filter[i] = var_filter[i - 1] + 1. / lag * ((filtered_y[i] - avg_filter[i - 1]) ** 2 - (
            filtered_y[i - lag] - avg_filter[i - 1]) ** 2 - (filtered_y[i] - filtered_y[i - lag]) ** 2 / lag)
        std_filter[i] = np.sqrt(var_filter[i])

    return dict(signals=labels,
                avgFilter=avg_filter,
                stdFilter=std_filter)

其他回答

@Jean-Paul算法的Perl实现。

#!/usr/bin/perl

use strict;
use Data::Dumper;

sub mean {
    my $data = shift;
    my $sum = 0;
    my $mean_val = 0;
    for my $item (@$data) {
        $sum += $item;
    }
    $mean_val = $sum / (scalar @$data) if @$data;
    return $mean_val;
}

sub variance {
    my $data = shift;
    my $variance_val = 0;
    my $mean_val = mean($data);
    my $sum = 0;
    for my $item (@$data) {
        $sum += ($item - $mean_val)**2;
    }
    $variance_val = $sum / (scalar @$data) if @$data;
    return $variance_val;
}

sub std {
    my $data = shift;
    my $variance_val = variance($data);
    return sqrt($variance_val);
}

# @param y - The input vector to analyze
# @parameter lag - The lag of the moving window
# @parameter threshold - The z-score at which the algorithm signals
# @parameter influence - The influence (between 0 and 1) of new signals on the mean and standard deviation
sub thresholding_algo {
    my ($y, $lag, $threshold, $influence) = @_;

    my @signals = (0) x @$y;
    my @filteredY = @$y;
    my @avgFilter = (0) x @$y;
    my @stdFilter = (0) x @$y;

    $avgFilter[$lag - 1] = mean([@$y[0..$lag-1]]);
    $stdFilter[$lag - 1] = std([@$y[0..$lag-1]]);

    for (my $i=$lag; $i <= @$y - 1; $i++) {
        if (abs($y->[$i] - $avgFilter[$i-1]) > $threshold * $stdFilter[$i-1]) {
            if ($y->[$i] > $avgFilter[$i-1]) {
                $signals[$i] = 1;
            } else {
                $signals[$i] = -1;
            }

            $filteredY[$i] = $influence * $y->[$i] + (1 - $influence) * $filteredY[$i-1];
            $avgFilter[$i] = mean([@filteredY[($i-$lag)..($i-1)]]);
            $stdFilter[$i] = std([@filteredY[($i-$lag)..($i-1)]]);
        }
        else {
            $signals[$i] = 0;
            $filteredY[$i] = $y->[$i];
            $avgFilter[$i] = mean([@filteredY[($i-$lag)..($i-1)]]);
            $stdFilter[$i] = std([@filteredY[($i-$lag)..($i-1)]]);
        }
    }

    return {
        signals => \@signals,
        avgFilter => \@avgFilter,
        stdFilter => \@stdFilter
    };
}

my $y = [1,1,1.1,1,0.9,1,1,1.1,1,0.9,1,1.1,1,1,0.9,1,1,1.1,1,1,1,1,1.1,0.9,1,1.1,1,1,0.9,
       1,1.1,1,1,1.1,1,0.8,0.9,1,1.2,0.9,1,1,1.1,1.2,1,1.5,1,3,2,5,3,2,1,1,1,0.9,1,1,3,
       2.6,4,3,3.2,2,1,1,0.8,4,4,2,2.5,1,1,1];

my $lag = 30;
my $threshold = 5;
my $influence = 0;

my $result = thresholding_algo($y, $lag, $threshold, $influence);

print Dumper $result;

原文的附录1:Matlab和R翻译

Matlab代码

function [signals,avgFilter,stdFilter] = ThresholdingAlgo(y,lag,threshold,influence)
% Initialise signal results
signals = zeros(length(y),1);
% Initialise filtered series
filteredY = y(1:lag+1);
% Initialise filters
avgFilter(lag+1,1) = mean(y(1:lag+1));
stdFilter(lag+1,1) = std(y(1:lag+1));
% Loop over all datapoints y(lag+2),...,y(t)
for i=lag+2:length(y)
    % If new value is a specified number of deviations away
    if abs(y(i)-avgFilter(i-1)) > threshold*stdFilter(i-1)
        if y(i) > avgFilter(i-1)
            % Positive signal
            signals(i) = 1;
        else
            % Negative signal
            signals(i) = -1;
        end
        % Make influence lower
        filteredY(i) = influence*y(i)+(1-influence)*filteredY(i-1);
    else
        % No signal
        signals(i) = 0;
        filteredY(i) = y(i);
    end
    % Adjust the filters
    avgFilter(i) = mean(filteredY(i-lag:i));
    stdFilter(i) = std(filteredY(i-lag:i));
end
% Done, now return results
end

例子:

% Data
y = [1 1 1.1 1 0.9 1 1 1.1 1 0.9 1 1.1 1 1 0.9 1 1 1.1 1 1,...
    1 1 1.1 0.9 1 1.1 1 1 0.9 1 1.1 1 1 1.1 1 0.8 0.9 1 1.2 0.9 1,...
    1 1.1 1.2 1 1.5 1 3 2 5 3 2 1 1 1 0.9 1,...
    1 3 2.6 4 3 3.2 2 1 1 0.8 4 4 2 2.5 1 1 1];

% Settings
lag = 30;
threshold = 5;
influence = 0;

% Get results
[signals,avg,dev] = ThresholdingAlgo(y,lag,threshold,influence);

figure; subplot(2,1,1); hold on;
x = 1:length(y); ix = lag+1:length(y);
area(x(ix),avg(ix)+threshold*dev(ix),'FaceColor',[0.9 0.9 0.9],'EdgeColor','none');
area(x(ix),avg(ix)-threshold*dev(ix),'FaceColor',[1 1 1],'EdgeColor','none');
plot(x(ix),avg(ix),'LineWidth',1,'Color','cyan','LineWidth',1.5);
plot(x(ix),avg(ix)+threshold*dev(ix),'LineWidth',1,'Color','green','LineWidth',1.5);
plot(x(ix),avg(ix)-threshold*dev(ix),'LineWidth',1,'Color','green','LineWidth',1.5);
plot(1:length(y),y,'b');
subplot(2,1,2);
stairs(signals,'r','LineWidth',1.5); ylim([-1.5 1.5]);

R代码

ThresholdingAlgo <- function(y,lag,threshold,influence) {
  signals <- rep(0,length(y))
  filteredY <- y[0:lag]
  avgFilter <- NULL
  stdFilter <- NULL
  avgFilter[lag] <- mean(y[0:lag], na.rm=TRUE)
  stdFilter[lag] <- sd(y[0:lag], na.rm=TRUE)
  for (i in (lag+1):length(y)){
    if (abs(y[i]-avgFilter[i-1]) > threshold*stdFilter[i-1]) {
      if (y[i] > avgFilter[i-1]) {
        signals[i] <- 1;
      } else {
        signals[i] <- -1;
      }
      filteredY[i] <- influence*y[i]+(1-influence)*filteredY[i-1]
    } else {
      signals[i] <- 0
      filteredY[i] <- y[i]
    }
    avgFilter[i] <- mean(filteredY[(i-lag):i], na.rm=TRUE)
    stdFilter[i] <- sd(filteredY[(i-lag):i], na.rm=TRUE)
  }
  return(list("signals"=signals,"avgFilter"=avgFilter,"stdFilter"=stdFilter))
}

例子:

# Data
y <- c(1,1,1.1,1,0.9,1,1,1.1,1,0.9,1,1.1,1,1,0.9,1,1,1.1,1,1,1,1,1.1,0.9,1,1.1,1,1,0.9,
       1,1.1,1,1,1.1,1,0.8,0.9,1,1.2,0.9,1,1,1.1,1.2,1,1.5,1,3,2,5,3,2,1,1,1,0.9,1,1,3,
       2.6,4,3,3.2,2,1,1,0.8,4,4,2,2.5,1,1,1)

lag       <- 30
threshold <- 5
influence <- 0

# Run algo with lag = 30, threshold = 5, influence = 0
result <- ThresholdingAlgo(y,lag,threshold,influence)

# Plot result
par(mfrow = c(2,1),oma = c(2,2,0,0) + 0.1,mar = c(0,0,2,1) + 0.2)
plot(1:length(y),y,type="l",ylab="",xlab="") 
lines(1:length(y),result$avgFilter,type="l",col="cyan",lwd=2)
lines(1:length(y),result$avgFilter+threshold*result$stdFilter,type="l",col="green",lwd=2)
lines(1:length(y),result$avgFilter-threshold*result$stdFilter,type="l",col="green",lwd=2)
plot(result$signals,type="S",col="red",ylab="",xlab="",ylim=c(-1.5,1.5),lwd=2)

这段代码(两种语言)将为原始问题的数据产生以下结果:


附录2原答案:Matlab演示代码

(点击创建数据)

function [] = RobustThresholdingDemo()

%% SPECIFICATIONS
lag         = 5;       % lag for the smoothing
threshold   = 3.5;     % number of st.dev. away from the mean to signal
influence   = 0.3;     % when signal: how much influence for new data? (between 0 and 1)
                       % 1 is normal influence, 0.5 is half      
%% START DEMO
DemoScreen(30,lag,threshold,influence);

end

function [signals,avgFilter,stdFilter] = ThresholdingAlgo(y,lag,threshold,influence)
signals = zeros(length(y),1);
filteredY = y(1:lag+1);
avgFilter(lag+1,1) = mean(y(1:lag+1));
stdFilter(lag+1,1) = std(y(1:lag+1));
for i=lag+2:length(y)
    if abs(y(i)-avgFilter(i-1)) > threshold*stdFilter(i-1)
        if y(i) > avgFilter(i-1)
            signals(i) = 1;
        else
            signals(i) = -1;
        end
        filteredY(i) = influence*y(i)+(1-influence)*filteredY(i-1);
    else
        signals(i) = 0;
        filteredY(i) = y(i);
    end
    avgFilter(i) = mean(filteredY(i-lag:i));
    stdFilter(i) = std(filteredY(i-lag:i));
end
end

% Demo screen function
function [] = DemoScreen(n,lag,threshold,influence)
figure('Position',[200 100,1000,500]);
subplot(2,1,1);
title(sprintf(['Draw data points (%.0f max)      [settings: lag = %.0f, '...
    'threshold = %.2f, influence = %.2f]'],n,lag,threshold,influence));
ylim([0 5]); xlim([0 50]);
H = gca; subplot(2,1,1);
set(H, 'YLimMode', 'manual'); set(H, 'XLimMode', 'manual');
set(H, 'YLim', get(H,'YLim')); set(H, 'XLim', get(H,'XLim'));
xg = []; yg = [];
for i=1:n
    try
        [xi,yi] = ginput(1);
    catch
        return;
    end
    xg = [xg xi]; yg = [yg yi];
    if i == 1
        subplot(2,1,1); hold on;
        plot(H, xg(i),yg(i),'r.'); 
        text(xg(i),yg(i),num2str(i),'FontSize',7);
    end
    if length(xg) > lag
        [signals,avg,dev] = ...
            ThresholdingAlgo(yg,lag,threshold,influence);
        area(xg(lag+1:end),avg(lag+1:end)+threshold*dev(lag+1:end),...
            'FaceColor',[0.9 0.9 0.9],'EdgeColor','none');
        area(xg(lag+1:end),avg(lag+1:end)-threshold*dev(lag+1:end),...
            'FaceColor',[1 1 1],'EdgeColor','none');
        plot(xg(lag+1:end),avg(lag+1:end),'LineWidth',1,'Color','cyan');
        plot(xg(lag+1:end),avg(lag+1:end)+threshold*dev(lag+1:end),...
            'LineWidth',1,'Color','green');
        plot(xg(lag+1:end),avg(lag+1:end)-threshold*dev(lag+1:end),...
            'LineWidth',1,'Color','green');
        subplot(2,1,2); hold on; title('Signal output');
        stairs(xg(lag+1:end),signals(lag+1:end),'LineWidth',2,'Color','blue');
        ylim([-2 2]); xlim([0 50]); hold off;
    end
    subplot(2,1,1); hold on;
    for j=2:i
        plot(xg([j-1:j]),yg([j-1:j]),'r'); plot(H,xg(j),yg(j),'r.');
        text(xg(j),yg(j),num2str(j),'FontSize',7);
    end
end
end

这种z-scores方法在峰值检测方面非常有效,也有助于异常值的去除。异常值对话经常讨论每个点的统计价值和变化数据的伦理。

但是,在来自易出错的串行通信或易出错的传感器的重复错误传感器值的情况下,错误或虚假读数中没有统计值。它们需要被识别并移除。

从视觉上看,错误是显而易见的。下图中的直线显示了需要删除的内容。但是用算法识别和消除错误是相当具有挑战性的。z分数效果很好。

下图是通过串行通信从传感器获得的值。偶尔的串行通信错误,传感器错误或两者都导致重复的,明显错误的数据点。

z-score峰值检测器能够在虚假数据点上发出信号,并生成一个干净的结果数据集,同时保留正确数据的特征:

一个python/numpy的迭代版本的答案https://stackoverflow.com/a/22640362/6029703在这里。对于大数据(100000+),此代码比计算平均和标准偏差的速度更快。

def peak_detection_smoothed_zscore_v2(x, lag, threshold, influence):
    '''
    iterative smoothed z-score algorithm
    Implementation of algorithm from https://stackoverflow.com/a/22640362/6029703
    '''
    import numpy as np
    labels = np.zeros(len(x))
    filtered_y = np.array(x)
    avg_filter = np.zeros(len(x))
    std_filter = np.zeros(len(x))
    var_filter = np.zeros(len(x))

    avg_filter[lag - 1] = np.mean(x[0:lag])
    std_filter[lag - 1] = np.std(x[0:lag])
    var_filter[lag - 1] = np.var(x[0:lag])
    for i in range(lag, len(x)):
        if abs(x[i] - avg_filter[i - 1]) > threshold * std_filter[i - 1]:
            if x[i] > avg_filter[i - 1]:
                labels[i] = 1
            else:
                labels[i] = -1
            filtered_y[i] = influence * x[i] + (1 - influence) * filtered_y[i - 1]
        else:
            labels[i] = 0
            filtered_y[i] = x[i]
        # update avg, var, std
        avg_filter[i] = avg_filter[i - 1] + 1. / lag * (filtered_y[i] - filtered_y[i - lag])
        var_filter[i] = var_filter[i - 1] + 1. / lag * ((filtered_y[i] - avg_filter[i - 1]) ** 2 - (
            filtered_y[i - lag] - avg_filter[i - 1]) ** 2 - (filtered_y[i] - filtered_y[i - lag]) ** 2 / lag)
        std_filter[i] = np.sqrt(var_filter[i])

    return dict(signals=labels,
                avgFilter=avg_filter,
                stdFilter=std_filter)

我在我的机器人项目中需要这样的东西。我想我可以归还Kotlin实现。

/**
* Smoothed zero-score alogrithm shamelessly copied from https://stackoverflow.com/a/22640362/6029703
* Uses a rolling mean and a rolling deviation (separate) to identify peaks in a vector
*
* @param y - The input vector to analyze
* @param lag - The lag of the moving window (i.e. how big the window is)
* @param threshold - The z-score at which the algorithm signals (i.e. how many standard deviations away from the moving mean a peak (or signal) is)
* @param influence - The influence (between 0 and 1) of new signals on the mean and standard deviation (how much a peak (or signal) should affect other values near it)
* @return - The calculated averages (avgFilter) and deviations (stdFilter), and the signals (signals)
*/
fun smoothedZScore(y: List<Double>, lag: Int, threshold: Double, influence: Double): Triple<List<Int>, List<Double>, List<Double>> {
    val stats = SummaryStatistics()
    // the results (peaks, 1 or -1) of our algorithm
    val signals = MutableList<Int>(y.size, { 0 })
    // filter out the signals (peaks) from our original list (using influence arg)
    val filteredY = ArrayList<Double>(y)
    // the current average of the rolling window
    val avgFilter = MutableList<Double>(y.size, { 0.0 })
    // the current standard deviation of the rolling window
    val stdFilter = MutableList<Double>(y.size, { 0.0 })
    // init avgFilter and stdFilter
    y.take(lag).forEach { s -> stats.addValue(s) }
    avgFilter[lag - 1] = stats.mean
    stdFilter[lag - 1] = Math.sqrt(stats.populationVariance) // getStandardDeviation() uses sample variance (not what we want)
    stats.clear()
    //loop input starting at end of rolling window
    (lag..y.size - 1).forEach { i ->
        //if the distance between the current value and average is enough standard deviations (threshold) away
        if (Math.abs(y[i] - avgFilter[i - 1]) > threshold * stdFilter[i - 1]) {
            //this is a signal (i.e. peak), determine if it is a positive or negative signal
            signals[i] = if (y[i] > avgFilter[i - 1]) 1 else -1
            //filter this signal out using influence
            filteredY[i] = (influence * y[i]) + ((1 - influence) * filteredY[i - 1])
        } else {
            //ensure this signal remains a zero
            signals[i] = 0
            //ensure this value is not filtered
            filteredY[i] = y[i]
        }
        //update rolling average and deviation
        (i - lag..i - 1).forEach { stats.addValue(filteredY[it]) }
        avgFilter[i] = stats.getMean()
        stdFilter[i] = Math.sqrt(stats.getPopulationVariance()) //getStandardDeviation() uses sample variance (not what we want)
        stats.clear()
    }
    return Triple(signals, avgFilter, stdFilter)
}

带有验证图的示例项目可以在github上找到。