更新:到目前为止表现最好的算法是这个。


这个问题探讨了在实时时间序列数据中检测突然峰值的稳健算法。

考虑以下示例数据:

这个数据的例子是Matlab格式的(但这个问题不是关于语言,而是关于算法):

p = [1 1 1.1 1 0.9 1 1 1.1 1 0.9 1 1.1 1 1 0.9 1 1 1.1 1 1 1 1 1.1 0.9 1 1.1 1 1 0.9, ...
     1 1.1 1 1 1.1 1 0.8 0.9 1 1.2 0.9 1 1 1.1 1.2 1 1.5 1 3 2 5 3 2 1 1 1 0.9 1 1, ... 
     3 2.6 4 3 3.2 2 1 1 0.8 4 4 2 2.5 1 1 1];

你可以清楚地看到有三个大峰和一些小峰。这个数据集是问题所涉及的时间序列数据集类的一个特定示例。这类数据集有两个一般特征:

有一种具有一般平均值的基本噪声 有很大的“峰值”或“更高的数据点”明显偏离噪声。

让我们假设以下情况:

峰的宽度不能事先确定 峰的高度明显偏离其他值 算法实时更新(因此每个新数据点都会更新)

对于这种情况,需要构造一个触发信号的边值。但是,边界值不能是静态的,必须通过算法实时确定。


我的问题是:什么是实时计算这些阈值的好算法?有没有针对这种情况的特定算法?最著名的算法是什么?


健壮的算法或有用的见解都受到高度赞赏。(可以用任何语言回答:这是关于算法的)


当前回答

另外,这个算法对我来说也很好…

sensitivity = 4; dwindow = 4; k = dwindow; data = [1., 1., 1., 1., 1., 1., 1., 1.1, 1., 0.8, 0.9, 1., 1.2, 0.9, 1., 1., 1.1, 1.2, 1., 1.5, 1., 3., 2., 5., 3., 2., 1., 1., 1., 0.9, 1., 1., 3., 2.6, 4., 3., 3.2, 2., 1., 1., 1., 1., 1. ]; //data = data.concat(data); //data = data.concat(data); var data1 = [{ name: 'original source', y: data }]; Plotly.newPlot('stage1', data1, { title: 'Sensor data', yaxis: { title: 'signal' } }); filtered = data.map((a,b,c)=>a>=Math.max(...c.slice(b-k,b))?a**3:0); var data2 = [{ name: 'filtered source', y: filtered }]; Plotly.newPlot('stage2', data2, { title: 'Filtered data<br>aₙ = aₙ³', yaxis: { title: 'signal' } }); dwindow = 6; k = dwindow; detected = filtered.map((a,b,c)=>a>Math.max(...c.slice(2))/sensitivity).map((a,b,c)=>(b>k) && c.slice(b-k,b).indexOf(a)==-1 ); var data3 = [{ name: 'detected peaks', y: detected }]; Plotly.newPlot('stage3', data3, { title: 'Maximum in a window of 6', yaxis: { title: 'signal' } }); dwindow = 10; k = dwindow; detected = filtered.map((a, b, c) => a > Math.max(...c.slice(2)) / 20).map((a, b, c) => (b > k) && c.slice(b - k, b).indexOf(a) == -1) var data4 = [{ name: 'detected peaks', y: detected }]; Plotly.newPlot('stage4', data4, { title: 'Maximum in a window of 10', yaxis: { title: 'signal' } }); <script src="https://cdn.jsdelivr.net/npm/plotly.js@2.16.5/dist/plotly.min.js"></script> <div id="stage1"></div> <div id="stage2"></div> <div id="stage3"></div> <div id="stage4"></div>

其他回答

下面是一个基于Groovy回答的实际Java实现。(我知道已经发布了Groovy和Kotlin实现,但对于像我这样只做Java的人来说,弄清楚如何在其他语言和Java之间转换真的很麻烦)。

(结果与他人图表相匹配)

算法实现

import java.util.ArrayList;
import java.util.Collections;
import java.util.HashMap;
import java.util.List;

import org.apache.commons.math3.stat.descriptive.SummaryStatistics;

public class SignalDetector {

    public HashMap<String, List> analyzeDataForSignals(List<Double> data, int lag, Double threshold, Double influence) {

        // init stats instance
        SummaryStatistics stats = new SummaryStatistics();

        // the results (peaks, 1 or -1) of our algorithm
        List<Integer> signals = new ArrayList<Integer>(Collections.nCopies(data.size(), 0));

        // filter out the signals (peaks) from our original list (using influence arg)
        List<Double> filteredData = new ArrayList<Double>(data);

        // the current average of the rolling window
        List<Double> avgFilter = new ArrayList<Double>(Collections.nCopies(data.size(), 0.0d));

        // the current standard deviation of the rolling window
        List<Double> stdFilter = new ArrayList<Double>(Collections.nCopies(data.size(), 0.0d));

        // init avgFilter and stdFilter
        for (int i = 0; i < lag; i++) {
            stats.addValue(data.get(i));
        }
        avgFilter.set(lag - 1, stats.getMean());
        stdFilter.set(lag - 1, Math.sqrt(stats.getPopulationVariance())); // getStandardDeviation() uses sample variance
        stats.clear();

        // loop input starting at end of rolling window
        for (int i = lag; i < data.size(); i++) {

            // if the distance between the current value and average is enough standard deviations (threshold) away
            if (Math.abs((data.get(i) - avgFilter.get(i - 1))) > threshold * stdFilter.get(i - 1)) {

                // this is a signal (i.e. peak), determine if it is a positive or negative signal
                if (data.get(i) > avgFilter.get(i - 1)) {
                    signals.set(i, 1);
                } else {
                    signals.set(i, -1);
                }

                // filter this signal out using influence
                filteredData.set(i, (influence * data.get(i)) + ((1 - influence) * filteredData.get(i - 1)));
            } else {
                // ensure this signal remains a zero
                signals.set(i, 0);
                // ensure this value is not filtered
                filteredData.set(i, data.get(i));
            }

            // update rolling average and deviation
            for (int j = i - lag; j < i; j++) {
                stats.addValue(filteredData.get(j));
            }
            avgFilter.set(i, stats.getMean());
            stdFilter.set(i, Math.sqrt(stats.getPopulationVariance()));
            stats.clear();
        }

        HashMap<String, List> returnMap = new HashMap<String, List>();
        returnMap.put("signals", signals);
        returnMap.put("filteredData", filteredData);
        returnMap.put("avgFilter", avgFilter);
        returnMap.put("stdFilter", stdFilter);

        return returnMap;

    } // end
}

主要方法

import java.text.DecimalFormat;
import java.util.ArrayList;
import java.util.Arrays;
import java.util.HashMap;
import java.util.List;

public class Main {

    public static void main(String[] args) throws Exception {
        DecimalFormat df = new DecimalFormat("#0.000");

        ArrayList<Double> data = new ArrayList<Double>(Arrays.asList(1d, 1d, 1.1d, 1d, 0.9d, 1d, 1d, 1.1d, 1d, 0.9d, 1d,
                1.1d, 1d, 1d, 0.9d, 1d, 1d, 1.1d, 1d, 1d, 1d, 1d, 1.1d, 0.9d, 1d, 1.1d, 1d, 1d, 0.9d, 1d, 1.1d, 1d, 1d,
                1.1d, 1d, 0.8d, 0.9d, 1d, 1.2d, 0.9d, 1d, 1d, 1.1d, 1.2d, 1d, 1.5d, 1d, 3d, 2d, 5d, 3d, 2d, 1d, 1d, 1d,
                0.9d, 1d, 1d, 3d, 2.6d, 4d, 3d, 3.2d, 2d, 1d, 1d, 0.8d, 4d, 4d, 2d, 2.5d, 1d, 1d, 1d));

        SignalDetector signalDetector = new SignalDetector();
        int lag = 30;
        double threshold = 5;
        double influence = 0;

        HashMap<String, List> resultsMap = signalDetector.analyzeDataForSignals(data, lag, threshold, influence);
        // print algorithm params
        System.out.println("lag: " + lag + "\t\tthreshold: " + threshold + "\t\tinfluence: " + influence);

        System.out.println("Data size: " + data.size());
        System.out.println("Signals size: " + resultsMap.get("signals").size());

        // print data
        System.out.print("Data:\t\t");
        for (double d : data) {
            System.out.print(df.format(d) + "\t");
        }
        System.out.println();

        // print signals
        System.out.print("Signals:\t");
        List<Integer> signalsList = resultsMap.get("signals");
        for (int i : signalsList) {
            System.out.print(df.format(i) + "\t");
        }
        System.out.println();

        // print filtered data
        System.out.print("Filtered Data:\t");
        List<Double> filteredDataList = resultsMap.get("filteredData");
        for (double d : filteredDataList) {
            System.out.print(df.format(d) + "\t");
        }
        System.out.println();

        // print running average
        System.out.print("Avg Filter:\t");
        List<Double> avgFilterList = resultsMap.get("avgFilter");
        for (double d : avgFilterList) {
            System.out.print(df.format(d) + "\t");
        }
        System.out.println();

        // print running std
        System.out.print("Std filter:\t");
        List<Double> stdFilterList = resultsMap.get("stdFilter");
        for (double d : stdFilterList) {
            System.out.print(df.format(d) + "\t");
        }
        System.out.println();

        System.out.println();
        for (int i = 0; i < signalsList.size(); i++) {
            if (signalsList.get(i) != 0) {
                System.out.println("Point " + i + " gave signal " + signalsList.get(i));
            }
        }
    }
}

结果

lag: 30     threshold: 5.0      influence: 0.0
Data size: 74
Signals size: 74
Data:           1.000   1.000   1.100   1.000   0.900   1.000   1.000   1.100   1.000   0.900   1.000   1.100   1.000   1.000   0.900   1.000   1.000   1.100   1.000   1.000   1.000   1.000   1.100   0.900   1.000   1.100   1.000   1.000   0.900   1.000   1.100   1.000   1.000   1.100   1.000   0.800   0.900   1.000   1.200   0.900   1.000   1.000   1.100   1.200   1.000   1.500   1.000   3.000   2.000   5.000   3.000   2.000   1.000   1.000   1.000   0.900   1.000   1.000   3.000   2.600   4.000   3.000   3.200   2.000   1.000   1.000   0.800   4.000   4.000   2.000   2.500   1.000   1.000   1.000   
Signals:        0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   1.000   0.000   1.000   1.000   1.000   1.000   1.000   0.000   0.000   0.000   0.000   0.000   0.000   1.000   1.000   1.000   1.000   1.000   1.000   0.000   0.000   0.000   1.000   1.000   1.000   1.000   0.000   0.000   0.000   
Filtered Data:  1.000   1.000   1.100   1.000   0.900   1.000   1.000   1.100   1.000   0.900   1.000   1.100   1.000   1.000   0.900   1.000   1.000   1.100   1.000   1.000   1.000   1.000   1.100   0.900   1.000   1.100   1.000   1.000   0.900   1.000   1.100   1.000   1.000   1.100   1.000   0.800   0.900   1.000   1.200   0.900   1.000   1.000   1.100   1.200   1.000   1.000   1.000   1.000   1.000   1.000   1.000   1.000   1.000   1.000   1.000   0.900   1.000   1.000   1.000   1.000   1.000   1.000   1.000   1.000   1.000   1.000   0.800   0.800   0.800   0.800   0.800   1.000   1.000   1.000   
Avg Filter:     0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   1.003   1.003   1.007   1.007   1.003   1.007   1.010   1.003   1.000   0.997   1.003   1.003   1.003   1.000   1.003   1.010   1.013   1.013   1.013   1.010   1.010   1.010   1.010   1.010   1.007   1.010   1.010   1.003   1.003   1.003   1.007   1.007   1.003   1.003   1.003   1.000   1.000   1.007   1.003   0.997   0.983   0.980   0.973   0.973   0.970   
Std filter:     0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.060   0.060   0.063   0.063   0.060   0.063   0.060   0.071   0.073   0.071   0.080   0.080   0.080   0.077   0.080   0.087   0.085   0.085   0.085   0.083   0.083   0.083   0.083   0.083   0.081   0.079   0.079   0.080   0.080   0.080   0.077   0.077   0.075   0.075   0.075   0.073   0.073   0.063   0.071   0.080   0.078   0.083   0.089   0.089   0.086   

Point 45 gave signal 1
Point 47 gave signal 1
Point 48 gave signal 1
Point 49 gave signal 1
Point 50 gave signal 1
Point 51 gave signal 1
Point 58 gave signal 1
Point 59 gave signal 1
Point 60 gave signal 1
Point 61 gave signal 1
Point 62 gave signal 1
Point 63 gave signal 1
Point 67 gave signal 1
Point 68 gave signal 1
Point 69 gave signal 1
Point 70 gave signal 1

我允许自己创建一个javascript版本。也许会有帮助。javascript应该是上面给出的伪代码的直接转录。可用的npm包和github repo:

https://github.com/crux/smoothed-z-score @joe_six / smoothed-z-score-peak-signal-detection

Javascript的翻译:

// javascript port of: https://stackoverflow.com/questions/22583391/peak-signal-detection-in-realtime-timeseries-data/48895639#48895639

function sum(a) {
    return a.reduce((acc, val) => acc + val)
}

function mean(a) {
    return sum(a) / a.length
}

function stddev(arr) {
    const arr_mean = mean(arr)
    const r = function(acc, val) {
        return acc + ((val - arr_mean) * (val - arr_mean))
    }
    return Math.sqrt(arr.reduce(r, 0.0) / arr.length)
}

function smoothed_z_score(y, params) {
    var p = params || {}
    // init cooefficients
    const lag = p.lag || 5
    const threshold = p.threshold || 3.5
    const influence = p.influece || 0.5

    if (y === undefined || y.length < lag + 2) {
        throw ` ## y data array to short(${y.length}) for given lag of ${lag}`
    }
    //console.log(`lag, threshold, influence: ${lag}, ${threshold}, ${influence}`)

    // init variables
    var signals = Array(y.length).fill(0)
    var filteredY = y.slice(0)
    const lead_in = y.slice(0, lag)
    //console.log("1: " + lead_in.toString())

    var avgFilter = []
    avgFilter[lag - 1] = mean(lead_in)
    var stdFilter = []
    stdFilter[lag - 1] = stddev(lead_in)
    //console.log("2: " + stdFilter.toString())

    for (var i = lag; i < y.length; i++) {
        //console.log(`${y[i]}, ${avgFilter[i-1]}, ${threshold}, ${stdFilter[i-1]}`)
        if (Math.abs(y[i] - avgFilter[i - 1]) > (threshold * stdFilter[i - 1])) {
            if (y[i] > avgFilter[i - 1]) {
                signals[i] = +1 // positive signal
            } else {
                signals[i] = -1 // negative signal
            }
            // make influence lower
            filteredY[i] = influence * y[i] + (1 - influence) * filteredY[i - 1]
        } else {
            signals[i] = 0 // no signal
            filteredY[i] = y[i]
        }

        // adjust the filters
        const y_lag = filteredY.slice(i - lag, i)
        avgFilter[i] = mean(y_lag)
        stdFilter[i] = stddev(y_lag)
    }

    return signals
}

module.exports = smoothed_z_score

我想把我的Julia算法实现提供给其他人。要点可以在这里找到

using Statistics
using Plots
function SmoothedZscoreAlgo(y, lag, threshold, influence)
    # Julia implimentation of http://stackoverflow.com/a/22640362/6029703
    n = length(y)
    signals = zeros(n) # init signal results
    filteredY = copy(y) # init filtered series
    avgFilter = zeros(n) # init average filter
    stdFilter = zeros(n) # init std filter
    avgFilter[lag - 1] = mean(y[1:lag]) # init first value
    stdFilter[lag - 1] = std(y[1:lag]) # init first value

    for i in range(lag, stop=n-1)
        if abs(y[i] - avgFilter[i-1]) > threshold*stdFilter[i-1]
            if y[i] > avgFilter[i-1]
                signals[i] += 1 # postive signal
            else
                signals[i] += -1 # negative signal
            end
            # Make influence lower
            filteredY[i] = influence*y[i] + (1-influence)*filteredY[i-1]
        else
            signals[i] = 0
            filteredY[i] = y[i]
        end
        avgFilter[i] = mean(filteredY[i-lag+1:i])
        stdFilter[i] = std(filteredY[i-lag+1:i])
    end
    return (signals = signals, avgFilter = avgFilter, stdFilter = stdFilter)
end


# Data
y = [1,1,1.1,1,0.9,1,1,1.1,1,0.9,1,1.1,1,1,0.9,1,1,1.1,1,1,1,1,1.1,0.9,1,1.1,1,1,0.9,
       1,1.1,1,1,1.1,1,0.8,0.9,1,1.2,0.9,1,1,1.1,1.2,1,1.5,1,3,2,5,3,2,1,1,1,0.9,1,1,3,
       2.6,4,3,3.2,2,1,1,0.8,4,4,2,2.5,1,1,1]

# Settings: lag = 30, threshold = 5, influence = 0
lag = 30
threshold = 5
influence = 0

results = SmoothedZscoreAlgo(y, lag, threshold, influence)
upper_bound = results[:avgFilter] + threshold * results[:stdFilter]
lower_bound = results[:avgFilter] - threshold * results[:stdFilter]
x = 1:length(y)

yplot = plot(x,y,color="blue", label="Y",legend=:topleft)
yplot = plot!(x,upper_bound, color="green", label="Upper Bound",legend=:topleft)
yplot = plot!(x,results[:avgFilter], color="cyan", label="Average Filter",legend=:topleft)
yplot = plot!(x,lower_bound, color="green", label="Lower Bound",legend=:topleft)
signalplot = plot(x,results[:signals],color="red",label="Signals",legend=:topleft)
plot(yplot,signalplot,layout=(2,1),legend=:topleft)

c++ (Qt)演示端口,交互式参数

我已经将这个算法的演示应用程序移植到c++ (Qt)上。

代码可以在GitHub上找到这里。带有安装程序的Windows(64位)构建在发布页面上。最后,我将添加一些文档和其他发布版本。

您不能绘制点,但可以从文本文件中导入它们(用空格分隔点——换行也算作空格)。您还可以调整算法参数,实时查看效果。这对于针对特定数据集调整算法以及探索参数如何影响结果非常有用。


上面的截图有些过时;从那以后,我添加了两个原始算法中没有的实验性选项:

反向处理数据集的选项(似乎至少改善了功率谱的结果)。 选项,为峰值设置硬性最小阈值。

我还在窗口中间添加了一个笨拙的缩放/平移条,只需用鼠标拖动它来缩放和平移。

模糊的构建指令:

在发布页面上有一个Windows安装程序(64位),但如果你想从源代码构建它,要点是:

安装Qt的构建工具,然后将qmake && make放在与.pro文件相同的目录下,或者 安装Qt Creator,打开.pro文件,选择任何默认的构建配置,然后按下构建和/或运行按钮(Creator的左下角)。

我只测试过Qt5。我有91%的信心,如果你手动配置组件,Qt Creator安装程序会让你安装Qt5(如果你手动配置组件,你还需要确认是否安装了Qt Charts)。Qt6可能是一个流畅的构建,也可能不是。有一天,我将测试Qt4和Qt6,使这些文档更好。也许吧。

在Palshikar(2009)中发现了另一个算法:

Palshikar, G.(2009)。时间序列中峰值检测的简单算法。在Proc. 1st Int。高级数据分析,商业分析和智能(卷122)。

论文可以从这里下载。

算法是这样的:

algorithm peak1 // one peak detection algorithms that uses peak function S1 

input T = x1, x2, …, xN, N // input time-series of N points 
input k // window size around the peak 
input h // typically 1 <= h <= 3 
output O // set of peaks detected in T 

begin 
O = empty set // initially empty 

    for (i = 1; i < n; i++) do
        // compute peak function value for each of the N points in T 
        a[i] = S1(k,i,xi,T); 
    end for 

    Compute the mean m' and standard deviation s' of all positive values in array a; 

    for (i = 1; i < n; i++) do // remove local peaks which are “small” in global context 
        if (a[i] > 0 && (a[i] – m') >( h * s')) then O = O + {xi}; 
        end if 
    end for 

    Order peaks in O in terms of increasing index in T 

    // retain only one peak out of any set of peaks within distance k of each other 

    for every adjacent pair of peaks xi and xj in O do 
        if |j – i| <= k then remove the smaller value of {xi, xj} from O 
        end if 
    end for 
end

优势

本文提出了5种不同的峰值检测算法 算法在原始时间序列数据上工作(不需要平滑)

缺点

很难事先确定k和h 峰不能是平的(就像我测试数据中的第三个峰)

例子: