我有一个数据框架形式的相当大的数据集,我想知道我如何能够将数据框架分成两个随机样本(80%和20%)进行训练和测试。

谢谢!


当前回答

你可以使用下面的代码来创建测试和训练样本:

from sklearn.model_selection import train_test_split
trainingSet, testSet = train_test_split(df, test_size=0.2)

测试大小可以根据您想要放入测试和训练数据集中的数据百分比而变化。

其他回答

在我的例子中,我想用特定的数字分割训练、测试和开发中的数据帧。我在这里分享我的解决方案

首先,为数据帧分配一个唯一的id(如果已经不存在的话)

import uuid
df['id'] = [uuid.uuid4() for i in range(len(df))]

以下是我的分割数字:

train = 120765
test  = 4134
dev   = 2816

分裂函数

def df_split(df, n):
    
    first  = df.sample(n)
    second = df[~df.id.isin(list(first['id']))]
    first.reset_index(drop=True, inplace = True)
    second.reset_index(drop=True, inplace = True)
    return first, second

现在分成培训,测试,开发

train, test = df_split(df, 120765)
test, dev   = df_split(test, 4134)

我将使用scikit-learn自己的training_test_split,并从索引生成它

from sklearn.model_selection import train_test_split


y = df.pop('output')
X = df

X_train,X_test,y_train,y_test = train_test_split(X.index,y,test_size=0.2)
X.iloc[X_train] # return dataframe train
import pandas as pd

from sklearn.model_selection import train_test_split

datafile_name = 'path_to_data_file'

data = pd.read_csv(datafile_name)

target_attribute = data['column_name']

X_train, X_test, y_train, y_test = train_test_split(data, target_attribute, test_size=0.8)

您可以使用df.as_matrix()函数并创建Numpy-array并传递它。

Y = df.pop()
X = df.as_matrix()
x_train, x_test, y_train, y_test = train_test_split(X, Y, test_size = 0.2)
model.fit(x_train, y_train)
model.test(x_test)

您需要将pandas数据帧转换为numpy数组,然后将numpy数组转换回数据帧

 import pandas as pd
df=pd.read_csv('/content/drive/My Drive/snippet.csv', sep='\t')
from sklearn.model_selection import train_test_split

train, test = train_test_split(df, test_size=0.2)
train1=pd.DataFrame(train)
test1=pd.DataFrame(test)
train1.to_csv('/content/drive/My Drive/train.csv',sep="\t",header=None, encoding='utf-8', index = False)
test1.to_csv('/content/drive/My Drive/test.csv',sep="\t",header=None, encoding='utf-8', index = False)