我有一个数据框架形式的相当大的数据集,我想知道我如何能够将数据框架分成两个随机样本(80%和20%)进行训练和测试。

谢谢!


当前回答

这个怎么样? Df是我的数据框架

total_size=len(df)

train_size=math.floor(0.66*total_size) (2/3 part of my dataset)

#training dataset
train=df.head(train_size)
#test dataset
test=df.tail(len(df) -train_size)

其他回答

我会使用numpy的randn:

In [11]: df = pd.DataFrame(np.random.randn(100, 2))

In [12]: msk = np.random.rand(len(df)) < 0.8

In [13]: train = df[msk]

In [14]: test = df[~msk]

为了证明这是有效的:

In [15]: len(test)
Out[15]: 21

In [16]: len(train)
Out[16]: 79

Scikit Learn的train_test_split就是一个很好的例子。它将拆分numpy数组和数据框架。

from sklearn.model_selection import train_test_split

train, test = train_test_split(df, test_size=0.2)

在我的例子中,我想用特定的数字分割训练、测试和开发中的数据帧。我在这里分享我的解决方案

首先,为数据帧分配一个唯一的id(如果已经不存在的话)

import uuid
df['id'] = [uuid.uuid4() for i in range(len(df))]

以下是我的分割数字:

train = 120765
test  = 4134
dev   = 2816

分裂函数

def df_split(df, n):
    
    first  = df.sample(n)
    second = df[~df.id.isin(list(first['id']))]
    first.reset_index(drop=True, inplace = True)
    second.reset_index(drop=True, inplace = True)
    return first, second

现在分成培训,测试,开发

train, test = df_split(df, 120765)
test, dev   = df_split(test, 4134)

熊猫随机抽样也可以

train=df.sample(frac=0.8,random_state=200)
test=df.drop(train.index)

对于相同的random_state值,您将始终在训练集和测试集中获得相同的确切数据。这带来了一定程度的可重复性,同时还随机分离训练和测试数据。

你可以使用下面的代码来创建测试和训练样本:

from sklearn.model_selection import train_test_split
trainingSet, testSet = train_test_split(df, test_size=0.2)

测试大小可以根据您想要放入测试和训练数据集中的数据百分比而变化。