我有一个数据框架形式的相当大的数据集,我想知道我如何能够将数据框架分成两个随机样本(80%和20%)进行训练和测试。

谢谢!


当前回答

将df分成训练,验证,测试。给定增广数据的df,只选择相关列和独立列。将最近的10%的行(使用'dates'列)分配给test_df。随机将剩余行的10%分配给validate_df,其余的分配给train_df。不要重新索引。检查所有行是否都是唯一分配的。只使用本地蟒和熊猫库。

方法1:将行分割为训练、验证、测试数据框架。

train_df = augmented_df[dependent_and_independent_columns]
test_df = train_df.sort_values('dates').tail(int(len(augmented_df)*0.1)) # select latest 10% of dates for test data
train_df = train_df.drop(test_df.index) # drop rows assigned to test_df
validate_df = train_df.sample(frac=0.1) # randomly assign 10%
train_df = train_df.drop(validate_df.index) # drop rows assigned to validate_df
assert len(augmented_df) == len(set(train_df.index).union(validate_df.index).union(test_df.index)) # every row must be uniquely assigned to a df

方法2:当validate必须是train的子集时拆分行(fastai)

train_validate_test_df = augmented_df[dependent_and_independent_columns]
test_df = train_validate_test_df.loc[augmented_df.sort_values('dates').tail(int(len(augmented_df)*0.1)).index] # select latest 10% of dates for test data
train_validate_df = train_validate_test_df.drop(test_df.index) # drop rows assigned to test_df
validate_df = train_validate_df.sample(frac=validate_ratio) # assign 10% to validate_df
train_df = train_validate_df.drop(validate_df.index) # drop rows assigned to validate_df
assert len(augmented_df) == len(set(train_df.index).union(validate_df.index).union(test_df.index)) # every row must be uniquely assigned to a df
# fastai example usage
dls = fastai.tabular.all.TabularDataLoaders.from_df(
train_validate_df, valid_idx=train_validate_df.index.get_indexer_for(validate_df.index))

其他回答

在我的例子中,我想用特定的数字分割训练、测试和开发中的数据帧。我在这里分享我的解决方案

首先,为数据帧分配一个唯一的id(如果已经不存在的话)

import uuid
df['id'] = [uuid.uuid4() for i in range(len(df))]

以下是我的分割数字:

train = 120765
test  = 4134
dev   = 2816

分裂函数

def df_split(df, n):
    
    first  = df.sample(n)
    second = df[~df.id.isin(list(first['id']))]
    first.reset_index(drop=True, inplace = True)
    second.reset_index(drop=True, inplace = True)
    return first, second

现在分成培训,测试,开发

train, test = df_split(df, 120765)
test, dev   = df_split(test, 4134)

这是我在需要分割数据帧时所写的。我考虑过使用上面安迪的方法,但不喜欢我不能精确地控制数据集的大小(例如,有时是79,有时是81,等等)。

def make_sets(data_df, test_portion):
    import random as rnd

    tot_ix = range(len(data_df))
    test_ix = sort(rnd.sample(tot_ix, int(test_portion * len(data_df))))
    train_ix = list(set(tot_ix) ^ set(test_ix))

    test_df = data_df.ix[test_ix]
    train_df = data_df.ix[train_ix]

    return train_df, test_df


train_df, test_df = make_sets(data_df, 0.2)
test_df.head()

你也可以考虑分层划分为训练集和测试集。设定划分也随机生成训练集和测试集,但保留了原始的类比例。这使得训练集和测试集更好地反映原始数据集的属性。

import numpy as np  

def get_train_test_inds(y,train_proportion=0.7):
    '''Generates indices, making random stratified split into training set and testing sets
    with proportions train_proportion and (1-train_proportion) of initial sample.
    y is any iterable indicating classes of each observation in the sample.
    Initial proportions of classes inside training and 
    testing sets are preserved (stratified sampling).
    '''

    y=np.array(y)
    train_inds = np.zeros(len(y),dtype=bool)
    test_inds = np.zeros(len(y),dtype=bool)
    values = np.unique(y)
    for value in values:
        value_inds = np.nonzero(y==value)[0]
        np.random.shuffle(value_inds)
        n = int(train_proportion*len(value_inds))

        train_inds[value_inds[:n]]=True
        test_inds[value_inds[n:]]=True

    return train_inds,test_inds

df[train_inds]和df[test_inds]为您提供原始DataFrame df的训练和测试集。

您需要将pandas数据帧转换为numpy数组,然后将numpy数组转换回数据帧

 import pandas as pd
df=pd.read_csv('/content/drive/My Drive/snippet.csv', sep='\t')
from sklearn.model_selection import train_test_split

train, test = train_test_split(df, test_size=0.2)
train1=pd.DataFrame(train)
test1=pd.DataFrame(test)
train1.to_csv('/content/drive/My Drive/train.csv',sep="\t",header=None, encoding='utf-8', index = False)
test1.to_csv('/content/drive/My Drive/test.csv',sep="\t",header=None, encoding='utf-8', index = False)

如果你需要根据你的数据集中的lables列来分割你的数据,你可以使用这个:

def split_to_train_test(df, label_column, train_frac=0.8):
    train_df, test_df = pd.DataFrame(), pd.DataFrame()
    labels = df[label_column].unique()
    for lbl in labels:
        lbl_df = df[df[label_column] == lbl]
        lbl_train_df = lbl_df.sample(frac=train_frac)
        lbl_test_df = lbl_df.drop(lbl_train_df.index)
        print '\n%s:\n---------\ntotal:%d\ntrain_df:%d\ntest_df:%d' % (lbl, len(lbl_df), len(lbl_train_df), len(lbl_test_df))
        train_df = train_df.append(lbl_train_df)
        test_df = test_df.append(lbl_test_df)

    return train_df, test_df

并使用它:

train, test = split_to_train_test(data, 'class', 0.7)

如果你想控制分割随机性或使用一些全局随机种子,你也可以传递random_state。