我有一个数据框架形式的相当大的数据集,我想知道我如何能够将数据框架分成两个随机样本(80%和20%)进行训练和测试。
谢谢!
我有一个数据框架形式的相当大的数据集,我想知道我如何能够将数据框架分成两个随机样本(80%和20%)进行训练和测试。
谢谢!
当前回答
要分成两个以上的类,如训练、测试和验证,可以这样做:
probs = np.random.rand(len(df))
training_mask = probs < 0.7
test_mask = (probs>=0.7) & (probs < 0.85)
validatoin_mask = probs >= 0.85
df_training = df[training_mask]
df_test = df[test_mask]
df_validation = df[validatoin_mask]
这将把大约70%的数据用于训练,15%用于测试,15%用于验证。
其他回答
shuffle = np.random.permutation(len(df))
test_size = int(len(df) * 0.2)
test_aux = shuffle[:test_size]
train_aux = shuffle[test_size:]
TRAIN_DF =df.iloc[train_aux]
TEST_DF = df.iloc[test_aux]
这是我在需要分割数据帧时所写的。我考虑过使用上面安迪的方法,但不喜欢我不能精确地控制数据集的大小(例如,有时是79,有时是81,等等)。
def make_sets(data_df, test_portion):
import random as rnd
tot_ix = range(len(data_df))
test_ix = sort(rnd.sample(tot_ix, int(test_portion * len(data_df))))
train_ix = list(set(tot_ix) ^ set(test_ix))
test_df = data_df.ix[test_ix]
train_df = data_df.ix[train_ix]
return train_df, test_df
train_df, test_df = make_sets(data_df, 0.2)
test_df.head()
如果你想把它分成训练集、测试集和验证集,你可以使用这个函数:
from sklearn.model_selection import train_test_split
import pandas as pd
def train_test_val_split(df, test_size=0.15, val_size=0.45):
temp, test = train_test_split(df, test_size=test_size)
total_items_count = len(df.index)
val_length = total_items_count * val_size
new_val_propotion = val_length / len(temp.index)
train, val = train_test_split(temp, test_size=new_val_propotion)
return train, test, val
示例方法选择数据的一部分,您可以先通过传递种子值来打乱数据。
train = df.sample(frac=0.8, random_state=42)
对于测试集,您可以删除通过train DF索引的行,然后重置新DF的索引。
test = df.drop(train_data.index).reset_index(drop=True)
你也可以考虑分层划分为训练集和测试集。设定划分也随机生成训练集和测试集,但保留了原始的类比例。这使得训练集和测试集更好地反映原始数据集的属性。
import numpy as np
def get_train_test_inds(y,train_proportion=0.7):
'''Generates indices, making random stratified split into training set and testing sets
with proportions train_proportion and (1-train_proportion) of initial sample.
y is any iterable indicating classes of each observation in the sample.
Initial proportions of classes inside training and
testing sets are preserved (stratified sampling).
'''
y=np.array(y)
train_inds = np.zeros(len(y),dtype=bool)
test_inds = np.zeros(len(y),dtype=bool)
values = np.unique(y)
for value in values:
value_inds = np.nonzero(y==value)[0]
np.random.shuffle(value_inds)
n = int(train_proportion*len(value_inds))
train_inds[value_inds[:n]]=True
test_inds[value_inds[n:]]=True
return train_inds,test_inds
df[train_inds]和df[test_inds]为您提供原始DataFrame df的训练和测试集。