我有一个数据框架形式的相当大的数据集,我想知道我如何能够将数据框架分成两个随机样本(80%和20%)进行训练和测试。

谢谢!


当前回答

我认为你还需要一个副本,而不是一个切片的数据框架,如果你想以后添加列。

msk = np.random.rand(len(df)) < 0.8
train, test = df[msk].copy(deep = True), df[~msk].copy(deep = True)

其他回答

import pandas as pd

from sklearn.model_selection import train_test_split

datafile_name = 'path_to_data_file'

data = pd.read_csv(datafile_name)

target_attribute = data['column_name']

X_train, X_test, y_train, y_test = train_test_split(data, target_attribute, test_size=0.8)

您可以使用df.as_matrix()函数并创建Numpy-array并传递它。

Y = df.pop()
X = df.as_matrix()
x_train, x_test, y_train, y_test = train_test_split(X, Y, test_size = 0.2)
model.fit(x_train, y_train)
model.test(x_test)

你可以使用下面的代码来创建测试和训练样本:

from sklearn.model_selection import train_test_split
trainingSet, testSet = train_test_split(df, test_size=0.2)

测试大小可以根据您想要放入测试和训练数据集中的数据百分比而变化。

Scikit Learn的train_test_split就是一个很好的例子。它将拆分numpy数组和数据框架。

from sklearn.model_selection import train_test_split

train, test = train_test_split(df, test_size=0.2)

示例方法选择数据的一部分,您可以先通过传递种子值来打乱数据。

train = df.sample(frac=0.8, random_state=42)

对于测试集,您可以删除通过train DF索引的行,然后重置新DF的索引。

test = df.drop(train_data.index).reset_index(drop=True)