我有一个数据框架形式的相当大的数据集,我想知道我如何能够将数据框架分成两个随机样本(80%和20%)进行训练和测试。
谢谢!
我有一个数据框架形式的相当大的数据集,我想知道我如何能够将数据框架分成两个随机样本(80%和20%)进行训练和测试。
谢谢!
当前回答
我认为你还需要一个副本,而不是一个切片的数据框架,如果你想以后添加列。
msk = np.random.rand(len(df)) < 0.8
train, test = df[msk].copy(deep = True), df[~msk].copy(deep = True)
其他回答
import pandas as pd
from sklearn.model_selection import train_test_split
datafile_name = 'path_to_data_file'
data = pd.read_csv(datafile_name)
target_attribute = data['column_name']
X_train, X_test, y_train, y_test = train_test_split(data, target_attribute, test_size=0.8)
如果你想把它分成训练集、测试集和验证集,你可以使用这个函数:
from sklearn.model_selection import train_test_split
import pandas as pd
def train_test_val_split(df, test_size=0.15, val_size=0.45):
temp, test = train_test_split(df, test_size=test_size)
total_items_count = len(df.index)
val_length = total_items_count * val_size
new_val_propotion = val_length / len(temp.index)
train, val = train_test_split(temp, test_size=new_val_propotion)
return train, test, val
有很多有效的答案。又多了一个。 从sklearn。交叉验证导入train_test_split
#gets a random 80% of the entire set
X_train = X.sample(frac=0.8, random_state=1)
#gets the left out portion of the dataset
X_test = X.loc[~df_model.index.isin(X_train.index)]
我会用K-fold交叉验证。 它已被证明比train_test_split提供更好的结果。下面是一篇关于如何在sklearn中应用它的文章,来自文档本身:https://scikit-learn.org/stable/modules/generated/sklearn.model_selection.KFold.html
这个怎么样? Df是我的数据框架
total_size=len(df)
train_size=math.floor(0.66*total_size) (2/3 part of my dataset)
#training dataset
train=df.head(train_size)
#test dataset
test=df.tail(len(df) -train_size)