我试图使用熊猫操作.csv文件,但我得到这个错误:
pandas.parser.CParserError:标记数据错误。C错误:第3行有2个字段,见12
我试着读过熊猫的文件,但一无所获。
我的代码很简单:
path = 'GOOG Key Ratios.csv'
#print(open(path).read())
data = pd.read_csv(path)
我该如何解决这个问题?我应该使用csv模块还是其他语言?
文件来自晨星公司
我试图使用熊猫操作.csv文件,但我得到这个错误:
pandas.parser.CParserError:标记数据错误。C错误:第3行有2个字段,见12
我试着读过熊猫的文件,但一无所获。
我的代码很简单:
path = 'GOOG Key Ratios.csv'
#print(open(path).read())
data = pd.read_csv(path)
我该如何解决这个问题?我应该使用csv模块还是其他语言?
文件来自晨星公司
当前回答
我也遇到过同样的问题。在同一个源文件上使用pd.read_table()似乎可以工作。我找不到原因,但对我的情况来说,这是一个有用的变通办法。也许有更博学的人能解释清楚为什么它能起作用。
编辑: 我发现,当文件中的某些文本与实际数据的格式不一致时,这个错误就会出现。这通常是页眉或页脚信息(大于一行,所以skip_header不起作用),它们不会被与实际数据相同数量的逗号分隔(当使用read_csv时)。使用read_table使用制表符作为分隔符,可以避免用户当前错误,但引入其他错误。
我通常通过将额外的数据读入文件,然后使用read_csv()方法来解决这个问题。
具体的解决方案可能因您的实际文件而异,但这种方法在一些情况下对我来说是有效的
其他回答
解析器被文件头弄糊涂了。它读取第一行并从该行推断列数。但是前两行并不能代表文件中的实际数据。
用data = pd试试。read_csv(路径,skiprows = 2)
以下是对我有用的(我张贴了这个答案,因为我在谷歌协作笔记本中特别遇到了这个问题):
df = pd.read_csv("/path/foo.csv", delimiter=';', skiprows=0, low_memory=False)
问题出在分隔符上。找出在数据中使用的分隔符类型,并如下所示指定它:
data = pd.read_csv('some_data.csv', sep='\t')
这看起来很丑,但你会有你的数据框架
import re
path = 'GOOG Key Ratios.csv'
try:
data = pd.read_csv(path)
except Exception as e:
val = re.findall('tokenizing.{1,100}\s*Expected\s*(\d{1,2})\s*',str(e),re.I)
data = pd.read_csv(path, skiprows=int(val[0])-1)
在我的例子中,分隔符不是默认的“,”,而是Tab。
pd.read_csv(file_name.csv, sep='\\t',lineterminator='\\r', engine='python', header='infer')
注意:“\t”并不像某些来源所建议的那样有效。“\\t”是必需的。