我试图使用熊猫操作.csv文件,但我得到这个错误:

pandas.parser.CParserError:标记数据错误。C错误:第3行有2个字段,见12

我试着读过熊猫的文件,但一无所获。

我的代码很简单:

path = 'GOOG Key Ratios.csv'
#print(open(path).read())
data = pd.read_csv(path)

我该如何解决这个问题?我应该使用csv模块还是其他语言?

文件来自晨星公司


当前回答

虽然这个问题并非如此,但压缩数据也可能出现此错误。显式地设置kwarg压缩值解决了我的问题。

result = pandas.read_csv(data_source, compression='gzip')

其他回答

您的CSV文件可能有可变的列数,read_csv从前几行推断出列数。在这种情况下有两种解决方法:

1)将CSV文件更改为具有最大列数的虚拟第一行(并指定header=[0])

2)或者使用names = list(range(0,N)),其中N是最大列数。

我也遇到过同样的问题。在同一个源文件上使用pd.read_table()似乎可以工作。我找不到原因,但对我的情况来说,这是一个有用的变通办法。也许有更博学的人能解释清楚为什么它能起作用。

编辑: 我发现,当文件中的某些文本与实际数据的格式不一致时,这个错误就会出现。这通常是页眉或页脚信息(大于一行,所以skip_header不起作用),它们不会被与实际数据相同数量的逗号分隔(当使用read_csv时)。使用read_table使用制表符作为分隔符,可以避免用户当前错误,但引入其他错误。

我通常通过将额外的数据读入文件,然后使用read_csv()方法来解决这个问题。

具体的解决方案可能因您的实际文件而异,但这种方法在一些情况下对我来说是有效的

对于那些在linux操作系统上使用Python 3有类似问题的人。

pandas.errors.ParserError: Error tokenizing data. C error: Calling
read(nbytes) on source failed. Try engine='python'.

试一试:

df.read_csv('file.csv', encoding='utf8', engine='python')

我有一个类似的情况

train = pd.read_csv('input.csv' , encoding='latin1',engine='python') 

工作

你可以使用:

pd.read_csv("mycsv.csv", delimiter=";")

熊猫1.4.4

它可以是文件的分隔符,将其作为文本文件打开,查找分隔符。然后,您将拥有可以为空且未命名的列,因为行包含太多分隔符。

因此,您可以使用pandas来处理它们并检查值。对我来说,这比在我的情况下跳过台词要好。