我试图使用熊猫操作.csv文件,但我得到这个错误:

pandas.parser.CParserError:标记数据错误。C错误:第3行有2个字段,见12

我试着读过熊猫的文件,但一无所获。

我的代码很简单:

path = 'GOOG Key Ratios.csv'
#print(open(path).read())
data = pd.read_csv(path)

我该如何解决这个问题?我应该使用csv模块还是其他语言?

文件来自晨星公司


当前回答

虽然这个问题并非如此,但压缩数据也可能出现此错误。显式地设置kwarg压缩值解决了我的问题。

result = pandas.read_csv(data_source, compression='gzip')

其他回答

我自己也遇到过几次这样的问题。几乎每次,原因都是我试图打开的文件一开始就不是一个正确保存的CSV。这里的“适当”是指每一行都有相同数量的分隔符或列。

通常发生这种情况是因为我在Excel中打开了CSV,然后不恰当地保存了它。尽管文件扩展名仍然是. CSV,但纯CSV格式已经被改变了。

任何以pandas to_csv保存的文件都将被正确格式化,不应该有这个问题。但如果你用另一个程序打开它,它可能会改变结构。

希望这能有所帮助。

我有同样的问题,当read_csv: ParserError:错误标记数据。 我只是把旧的csv文件保存为一个新的csv文件。问题解决了!

我也遇到过同样的问题。在同一个源文件上使用pd.read_table()似乎可以工作。我找不到原因,但对我的情况来说,这是一个有用的变通办法。也许有更博学的人能解释清楚为什么它能起作用。

编辑: 我发现,当文件中的某些文本与实际数据的格式不一致时,这个错误就会出现。这通常是页眉或页脚信息(大于一行,所以skip_header不起作用),它们不会被与实际数据相同数量的逗号分隔(当使用read_csv时)。使用read_table使用制表符作为分隔符,可以避免用户当前错误,但引入其他错误。

我通常通过将额外的数据读入文件,然后使用read_csv()方法来解决这个问题。

具体的解决方案可能因您的实际文件而异,但这种方法在一些情况下对我来说是有效的

对于那些在linux操作系统上使用Python 3有类似问题的人。

pandas.errors.ParserError: Error tokenizing data. C error: Calling
read(nbytes) on source failed. Try engine='python'.

试一试:

df.read_csv('file.csv', encoding='utf8', engine='python')

据我所知,在查看了您的文件后,问题是您试图加载的csv文件有多个表。有空行,或者包含表标题的行。试着看看这个Stackoverflow的答案。它展示了如何以编程方式实现这一点。

另一种动态方法是使用csv模块,一次读取每一行,并进行健全检查/正则表达式,以推断该行是否为(title/header/values/blank)。使用这种方法还有一个优点,你可以根据需要在python对象中分割/追加/收集数据。

最简单的方法是在手动选择表格并将其复制到剪贴板后使用pandas函数pd.read_clipboard(),以防您可以在excel或其他工具中打开csv。

无关:

此外,与您的问题无关,但因为没有人提到这一点:我在从UCI加载一些数据集(如seeds_dataset.txt)时遇到了同样的问题。在我的例子中,发生错误是因为一些分隔符的空格比真正的制表符多。例如,请参见下面的第3行

14.38   14.21   0.8951  5.386   3.312   2.462   4.956   1
14.69   14.49   0.8799  5.563   3.259   3.586   5.219   1
14.11   14.1    0.8911  5.42    3.302   2.7     5       1

因此,在分隔符模式中使用\t+而不是\t。

data = pd.read_csv(path, sep='\t+`, header=None)