我试图使用熊猫操作.csv文件,但我得到这个错误:

pandas.parser.CParserError:标记数据错误。C错误:第3行有2个字段,见12

我试着读过熊猫的文件,但一无所获。

我的代码很简单:

path = 'GOOG Key Ratios.csv'
#print(open(path).read())
data = pd.read_csv(path)

我该如何解决这个问题?我应该使用csv模块还是其他语言?

文件来自晨星公司


当前回答

您的CSV文件可能有可变的列数,read_csv从前几行推断出列数。在这种情况下有两种解决方法:

1)将CSV文件更改为具有最大列数的虚拟第一行(并指定header=[0])

2)或者使用names = list(range(0,N)),其中N是最大列数。

其他回答

使用 熊猫。read_csv (CSVFILENAME,头= None, 9 = " ")

当试图从链接中读取CSV数据时

http://archive.ics.uci.edu/ml/machine-learning-databases/adult/adult.data

我将该网站的数据复制到我的csv文件中。它有额外的空格,所以使用sep =', '并且它工作:)

这可能是个问题

数据中的分隔符 第一行,正如@TomAugspurger所指出的

要解决这个问题,请在调用read_csv时尝试指定sep和/或头参数。例如,

df = pandas.read_csv(filepath, sep='delimiter', header=None)

在上面的代码中,sep定义了您的分隔符和header=None,告诉pandas您的源数据没有作为标题/列标题的行。因此,文档说:“如果文件不包含标题行,那么你应该显式地传递header=None”。在这种情况下,pandas会自动为每个字段{0,1,2,…}创建整数索引。

根据文档,分隔符应该不是问题。文档中说“如果sep为None[未指定],将尝试自动确定此值。”然而,我在这方面运气不太好,包括带有明显分隔符的实例。

另一种解决方案可能是尝试自动检测分隔符

# use the first 2 lines of the file to detect separator
temp_lines = csv_file.readline() + '\n' + csv_file.readline()
dialect = csv.Sniffer().sniff(temp_lines, delimiters=';,')

# remember to go back to the start of the file for the next time it's read
csv_file.seek(0) 

df = pd.read_csv(csv_file, sep=dialect.delimiter)

解析器被文件头弄糊涂了。它读取第一行并从该行推断列数。但是前两行并不能代表文件中的实际数据。

用data = pd试试。read_csv(路径,skiprows = 2)

在我的例子中,分隔符不是默认的“,”,而是Tab。

pd.read_csv(file_name.csv, sep='\\t',lineterminator='\\r', engine='python', header='infer')

注意:“\t”并不像某些来源所建议的那样有效。“\\t”是必需的。

我遇到了这个问题,我试图在不传递列名的情况下读取CSV。

df = pd.read_csv(filename, header=None)

我事先在一个列表中指定了列名,然后将它们传递到名称中,它立即解决了这个问题。如果您没有设置列名,您可以创建与数据中可能存在的最大列数量一样多的占位符名称。

col_names = ["col1", "col2", "col3", ...]
df = pd.read_csv(filename, names=col_names)