我试图使用熊猫操作.csv文件,但我得到这个错误:

pandas.parser.CParserError:标记数据错误。C错误:第3行有2个字段,见12

我试着读过熊猫的文件,但一无所获。

我的代码很简单:

path = 'GOOG Key Ratios.csv'
#print(open(path).read())
data = pd.read_csv(path)

我该如何解决这个问题?我应该使用csv模块还是其他语言?

文件来自晨星公司


当前回答

我有同样的问题,当read_csv: ParserError:错误标记数据。 我只是把旧的csv文件保存为一个新的csv文件。问题解决了!

其他回答

我也遇到过同样的问题。在同一个源文件上使用pd.read_table()似乎可以工作。我找不到原因,但对我的情况来说,这是一个有用的变通办法。也许有更博学的人能解释清楚为什么它能起作用。

编辑: 我发现,当文件中的某些文本与实际数据的格式不一致时,这个错误就会出现。这通常是页眉或页脚信息(大于一行,所以skip_header不起作用),它们不会被与实际数据相同数量的逗号分隔(当使用read_csv时)。使用read_table使用制表符作为分隔符,可以避免用户当前错误,但引入其他错误。

我通常通过将额外的数据读入文件,然后使用read_csv()方法来解决这个问题。

具体的解决方案可能因您的实际文件而异,但这种方法在一些情况下对我来说是有效的

你也可以试试;

data = pd.read_csv('file1.csv', on_bad_lines='skip')

请注意,这将导致有问题的行被跳过。

Edit

对于熊猫< 1.3.0尝试

data = pd.read_csv("file1.csv", error_bad_lines=False)

根据熊猫API参考。

在参数中使用分隔符

pd.read_csv(filename, delimiter=",", encoding='utf-8')

它会读。

这就是我所做的。

Sep ='::'解决了我的问题:

data=pd.read_csv('C:\\Users\\HP\\Downloads\\NPL ASSINGMENT 2 imdb_labelled\\imdb_labelled.txt',engine='python',header=None,sep='::')

虽然这个问题并非如此,但压缩数据也可能出现此错误。显式地设置kwarg压缩值解决了我的问题。

result = pandas.read_csv(data_source, compression='gzip')