我试图使用熊猫操作.csv文件,但我得到这个错误:

pandas.parser.CParserError:标记数据错误。C错误:第3行有2个字段,见12

我试着读过熊猫的文件,但一无所获。

我的代码很简单:

path = 'GOOG Key Ratios.csv'
#print(open(path).read())
data = pd.read_csv(path)

我该如何解决这个问题?我应该使用csv模块还是其他语言?

文件来自晨星公司


当前回答

据我所知,在查看了您的文件后,问题是您试图加载的csv文件有多个表。有空行,或者包含表标题的行。试着看看这个Stackoverflow的答案。它展示了如何以编程方式实现这一点。

另一种动态方法是使用csv模块,一次读取每一行,并进行健全检查/正则表达式,以推断该行是否为(title/header/values/blank)。使用这种方法还有一个优点,你可以根据需要在python对象中分割/追加/收集数据。

最简单的方法是在手动选择表格并将其复制到剪贴板后使用pandas函数pd.read_clipboard(),以防您可以在excel或其他工具中打开csv。

无关:

此外,与您的问题无关,但因为没有人提到这一点:我在从UCI加载一些数据集(如seeds_dataset.txt)时遇到了同样的问题。在我的例子中,发生错误是因为一些分隔符的空格比真正的制表符多。例如,请参见下面的第3行

14.38   14.21   0.8951  5.386   3.312   2.462   4.956   1
14.69   14.49   0.8799  5.563   3.259   3.586   5.219   1
14.11   14.1    0.8911  5.42    3.302   2.7     5       1

因此,在分隔符模式中使用\t+而不是\t。

data = pd.read_csv(path, sep='\t+`, header=None)

其他回答

解析器被文件头弄糊涂了。它读取第一行并从该行推断列数。但是前两行并不能代表文件中的实际数据。

用data = pd试试。read_csv(路径,skiprows = 2)

你也可以试试;

data = pd.read_csv('file1.csv', on_bad_lines='skip')

请注意,这将导致有问题的行被跳过。

Edit

对于熊猫< 1.3.0尝试

data = pd.read_csv("file1.csv", error_bad_lines=False)

根据熊猫API参考。

试题:熊猫。read_csv(path, sep = ',',header=None)

我也遇到过同样的问题。在同一个源文件上使用pd.read_table()似乎可以工作。我找不到原因,但对我的情况来说,这是一个有用的变通办法。也许有更博学的人能解释清楚为什么它能起作用。

编辑: 我发现,当文件中的某些文本与实际数据的格式不一致时,这个错误就会出现。这通常是页眉或页脚信息(大于一行,所以skip_header不起作用),它们不会被与实际数据相同数量的逗号分隔(当使用read_csv时)。使用read_table使用制表符作为分隔符,可以避免用户当前错误,但引入其他错误。

我通常通过将额外的数据读入文件,然后使用read_csv()方法来解决这个问题。

具体的解决方案可能因您的实际文件而异,但这种方法在一些情况下对我来说是有效的

这可能是个问题

数据中的分隔符 第一行,正如@TomAugspurger所指出的

要解决这个问题,请在调用read_csv时尝试指定sep和/或头参数。例如,

df = pandas.read_csv(filepath, sep='delimiter', header=None)

在上面的代码中,sep定义了您的分隔符和header=None,告诉pandas您的源数据没有作为标题/列标题的行。因此,文档说:“如果文件不包含标题行,那么你应该显式地传递header=None”。在这种情况下,pandas会自动为每个字段{0,1,2,…}创建整数索引。

根据文档,分隔符应该不是问题。文档中说“如果sep为None[未指定],将尝试自动确定此值。”然而,我在这方面运气不太好,包括带有明显分隔符的实例。

另一种解决方案可能是尝试自动检测分隔符

# use the first 2 lines of the file to detect separator
temp_lines = csv_file.readline() + '\n' + csv_file.readline()
dialect = csv.Sniffer().sniff(temp_lines, delimiters=';,')

# remember to go back to the start of the file for the next time it's read
csv_file.seek(0) 

df = pd.read_csv(csv_file, sep=dialect.delimiter)