我试图使用熊猫操作.csv文件,但我得到这个错误:

pandas.parser.CParserError:标记数据错误。C错误:第3行有2个字段,见12

我试着读过熊猫的文件,但一无所获。

我的代码很简单:

path = 'GOOG Key Ratios.csv'
#print(open(path).read())
data = pd.read_csv(path)

我该如何解决这个问题?我应该使用csv模块还是其他语言?

文件来自晨星公司


当前回答

使用 熊猫。read_csv (CSVFILENAME,头= None, 9 = " ")

当试图从链接中读取CSV数据时

http://archive.ics.uci.edu/ml/machine-learning-databases/adult/adult.data

我将该网站的数据复制到我的csv文件中。它有额外的空格,所以使用sep =', '并且它工作:)

其他回答

这可能是个问题

数据中的分隔符 第一行,正如@TomAugspurger所指出的

要解决这个问题,请在调用read_csv时尝试指定sep和/或头参数。例如,

df = pandas.read_csv(filepath, sep='delimiter', header=None)

在上面的代码中,sep定义了您的分隔符和header=None,告诉pandas您的源数据没有作为标题/列标题的行。因此,文档说:“如果文件不包含标题行,那么你应该显式地传递header=None”。在这种情况下,pandas会自动为每个字段{0,1,2,…}创建整数索引。

根据文档,分隔符应该不是问题。文档中说“如果sep为None[未指定],将尝试自动确定此值。”然而,我在这方面运气不太好,包括带有明显分隔符的实例。

另一种解决方案可能是尝试自动检测分隔符

# use the first 2 lines of the file to detect separator
temp_lines = csv_file.readline() + '\n' + csv_file.readline()
dialect = csv.Sniffer().sniff(temp_lines, delimiters=';,')

# remember to go back to the start of the file for the next time it's read
csv_file.seek(0) 

df = pd.read_csv(csv_file, sep=dialect.delimiter)

有时候问题不在于如何使用python,而在于如何处理原始数据。 我得到了这个错误信息

Error tokenizing data. C error: Expected 18 fields in line 72, saw 19.

结果发现,在列描述中有时会有逗号。这意味着需要清理CSV文件或使用另一个分隔符。

虽然这个问题并非如此,但压缩数据也可能出现此错误。显式地设置kwarg压缩值解决了我的问题。

result = pandas.read_csv(data_source, compression='gzip')

我也遇到过同样的问题。在同一个源文件上使用pd.read_table()似乎可以工作。我找不到原因,但对我的情况来说,这是一个有用的变通办法。也许有更博学的人能解释清楚为什么它能起作用。

编辑: 我发现,当文件中的某些文本与实际数据的格式不一致时,这个错误就会出现。这通常是页眉或页脚信息(大于一行,所以skip_header不起作用),它们不会被与实际数据相同数量的逗号分隔(当使用read_csv时)。使用read_table使用制表符作为分隔符,可以避免用户当前错误,但引入其他错误。

我通常通过将额外的数据读入文件,然后使用read_csv()方法来解决这个问题。

具体的解决方案可能因您的实际文件而异,但这种方法在一些情况下对我来说是有效的

我从同事那里收到了.csv文件,当我试图使用pd.read_csv()读取csv文件时,我收到了类似的错误。显然,它试图使用第一行来为数据框架生成列,但许多行包含的列比第一行所暗示的要多。我最终通过简单地打开文件并重新保存为.csv并再次使用pd.read_csv()来解决这个问题。