我试图使用熊猫操作.csv文件,但我得到这个错误:
pandas.parser.CParserError:标记数据错误。C错误:第3行有2个字段,见12
我试着读过熊猫的文件,但一无所获。
我的代码很简单:
path = 'GOOG Key Ratios.csv'
#print(open(path).read())
data = pd.read_csv(path)
我该如何解决这个问题?我应该使用csv模块还是其他语言?
文件来自晨星公司
我试图使用熊猫操作.csv文件,但我得到这个错误:
pandas.parser.CParserError:标记数据错误。C错误:第3行有2个字段,见12
我试着读过熊猫的文件,但一无所获。
我的代码很简单:
path = 'GOOG Key Ratios.csv'
#print(open(path).read())
data = pd.read_csv(path)
我该如何解决这个问题?我应该使用csv模块还是其他语言?
文件来自晨星公司
当前回答
我遇到过这样的错误,一个丢失的引号。我使用映射软件,当导出以逗号分隔的文件时,它会在文本项周围加上引号。使用引号的文本(例如:' =英尺和' =英寸)可能会导致分隔符冲突。考虑下面这个例子,5英寸的测井曲线打印很差:
UWI_key,经度,纬度,备注 US42051316890000, 30.4386484, -96.4330734,“可怜的5””
用5英寸作为5英寸的简写,最终会给工作带来麻烦。Excel会简单地去掉额外的引号,但是Pandas没有上面提到的error_bad_lines=False参数就会失效。
其他回答
对于那些在linux操作系统上使用Python 3有类似问题的人。
pandas.errors.ParserError: Error tokenizing data. C error: Calling
read(nbytes) on source failed. Try engine='python'.
试一试:
df.read_csv('file.csv', encoding='utf8', engine='python')
在我的例子中,分隔符不是默认的“,”,而是Tab。
pd.read_csv(file_name.csv, sep='\\t',lineterminator='\\r', engine='python', header='infer')
注意:“\t”并不像某些来源所建议的那样有效。“\\t”是必需的。
在我的例子中,这是因为csv文件的第一行和最后两行格式与文件的中间内容不同。
因此,我所做的是将csv文件作为字符串打开,解析字符串的内容,然后使用read_csv获取数据帧。
import io
import pandas as pd
file = open(f'{file_path}/{file_name}', 'r')
content = file.read()
# change new line character from '\r\n' to '\n'
lines = content.replace('\r', '').split('\n')
# Remove the first and last 2 lines of the file
# StringIO can be considered as a file stored in memory
df = pd.read_csv(StringIO("\n".join(lines[2:-2])), header=None)
在处理类似的解析错误时,我发现另一种方法很有用,它使用CSV模块将数据重新路由到pandas df。例如:
import csv
import pandas as pd
path = 'C:/FileLocation/'
file = 'filename.csv'
f = open(path+file,'rt')
reader = csv.reader(f)
#once contents are available, I then put them in a list
csv_list = []
for l in reader:
csv_list.append(l)
f.close()
#now pandas has no problem getting into a df
df = pd.DataFrame(csv_list)
我发现CSV模块对于格式不佳的逗号分隔的文件更加健壮,因此已经成功地用这种方法解决了诸如此类的问题。
这可能是个问题
数据中的分隔符 第一行,正如@TomAugspurger所指出的
要解决这个问题,请在调用read_csv时尝试指定sep和/或头参数。例如,
df = pandas.read_csv(filepath, sep='delimiter', header=None)
在上面的代码中,sep定义了您的分隔符和header=None,告诉pandas您的源数据没有作为标题/列标题的行。因此,文档说:“如果文件不包含标题行,那么你应该显式地传递header=None”。在这种情况下,pandas会自动为每个字段{0,1,2,…}创建整数索引。
根据文档,分隔符应该不是问题。文档中说“如果sep为None[未指定],将尝试自动确定此值。”然而,我在这方面运气不太好,包括带有明显分隔符的实例。
另一种解决方案可能是尝试自动检测分隔符
# use the first 2 lines of the file to detect separator
temp_lines = csv_file.readline() + '\n' + csv_file.readline()
dialect = csv.Sniffer().sniff(temp_lines, delimiters=';,')
# remember to go back to the start of the file for the next time it's read
csv_file.seek(0)
df = pd.read_csv(csv_file, sep=dialect.delimiter)