我试图使用熊猫操作.csv文件,但我得到这个错误:
pandas.parser.CParserError:标记数据错误。C错误:第3行有2个字段,见12
我试着读过熊猫的文件,但一无所获。
我的代码很简单:
path = 'GOOG Key Ratios.csv'
#print(open(path).read())
data = pd.read_csv(path)
我该如何解决这个问题?我应该使用csv模块还是其他语言?
文件来自晨星公司
我试图使用熊猫操作.csv文件,但我得到这个错误:
pandas.parser.CParserError:标记数据错误。C错误:第3行有2个字段,见12
我试着读过熊猫的文件,但一无所获。
我的代码很简单:
path = 'GOOG Key Ratios.csv'
#print(open(path).read())
data = pd.read_csv(path)
我该如何解决这个问题?我应该使用csv模块还是其他语言?
文件来自晨星公司
当前回答
我遇到过这样的错误,一个丢失的引号。我使用映射软件,当导出以逗号分隔的文件时,它会在文本项周围加上引号。使用引号的文本(例如:' =英尺和' =英寸)可能会导致分隔符冲突。考虑下面这个例子,5英寸的测井曲线打印很差:
UWI_key,经度,纬度,备注 US42051316890000, 30.4386484, -96.4330734,“可怜的5””
用5英寸作为5英寸的简写,最终会给工作带来麻烦。Excel会简单地去掉额外的引号,但是Pandas没有上面提到的error_bad_lines=False参数就会失效。
其他回答
这看起来很丑,但你会有你的数据框架
import re
path = 'GOOG Key Ratios.csv'
try:
data = pd.read_csv(path)
except Exception as e:
val = re.findall('tokenizing.{1,100}\s*Expected\s*(\d{1,2})\s*',str(e),re.I)
data = pd.read_csv(path, skiprows=int(val[0])-1)
我自己也遇到过几次这样的问题。几乎每次,原因都是我试图打开的文件一开始就不是一个正确保存的CSV。这里的“适当”是指每一行都有相同数量的分隔符或列。
通常发生这种情况是因为我在Excel中打开了CSV,然后不恰当地保存了它。尽管文件扩展名仍然是. CSV,但纯CSV格式已经被改变了。
任何以pandas to_csv保存的文件都将被正确格式化,不应该有这个问题。但如果你用另一个程序打开它,它可能会改变结构。
希望这能有所帮助。
解析器被文件头弄糊涂了。它读取第一行并从该行推断列数。但是前两行并不能代表文件中的实际数据。
用data = pd试试。read_csv(路径,skiprows = 2)
我有一个已有行号的数据集,我使用index_col:
pd.read_csv('train.csv', index_col=0)
标记数据错误。C错误:第3行有2个字段,见12
这个错误给出了解决问题“Expected 2 fields in line 3, saw 12”的线索,saw 12表示第二行长度为12,第一行长度为2。
当您有如下所示的数据时,如果您跳过行,那么大部分数据将被跳过
data = """1,2,3
1,2,3,4
1,2,3,4,5
1,2
1,2,3,4"""
如果您不想跳过任何行,请执行以下操作
#First lets find the maximum column for all the rows
with open("file_name.csv", 'r') as temp_f:
# get No of columns in each line
col_count = [ len(l.split(",")) for l in temp_f.readlines() ]
### Generate column names (names will be 0, 1, 2, ..., maximum columns - 1)
column_names = [i for i in range(max(col_count))]
import pandas as pd
# inside range set the maximum value you can see in "Expected 4 fields in line 2, saw 8"
# here will be 8
data = pd.read_csv("file_name.csv",header = None,names=column_names )
使用range而不是手动设置名称,因为当您有很多列时,这样做会很麻烦。
此外,如果需要使用均匀的数据长度,可以将NaN值填充为0。如。对于聚类(k-means)
new_data = data.fillna(0)