我试图使用熊猫操作.csv文件,但我得到这个错误:

pandas.parser.CParserError:标记数据错误。C错误:第3行有2个字段,见12

我试着读过熊猫的文件,但一无所获。

我的代码很简单:

path = 'GOOG Key Ratios.csv'
#print(open(path).read())
data = pd.read_csv(path)

我该如何解决这个问题?我应该使用csv模块还是其他语言?

文件来自晨星公司


当前回答

对我来说,问题是一个新列被附加到我的CSV盘中。如果我使用error_bad_lines=False,接受的答案解决方案将不起作用,因为未来的每一行都将被丢弃。

这种情况下的解决方案是使用pd.read_csv()中的usecols参数。通过这种方式,我可以只指定需要读入CSV中的列,并且只要标题列存在(并且列名不改变),我的Python代码将对未来的CSV更改保持弹性。

usecols : list-like or callable, optional Return a subset of the columns. If list-like, all elements must either be positional (i.e. integer indices into the document columns) or strings that correspond to column names provided either by the user in names or inferred from the document header row(s). For example, a valid list-like usecols parameter would be [0, 1, 2] or ['foo', 'bar', 'baz']. Element order is ignored, so usecols=[0, 1] is the same as [1, 0]. To instantiate a DataFrame from data with element order preserved use pd.read_csv(data, usecols=['foo', 'bar'])[['foo', 'bar']] for columns in ['foo', 'bar'] order or pd.read_csv(data, usecols=['foo', 'bar'])[['bar', 'foo']] for ['bar', 'foo'] order.

例子

my_columns = ['foo', 'bar', 'bob']
df = pd.read_csv(file_path, usecols=my_columns)

这样做的另一个好处是,如果我只使用一个有18-20列的CSV中的3-4列,我可以将更少的数据加载到内存中。

其他回答

标记数据错误。C错误:第3行有2个字段,见12

这个错误给出了解决问题“Expected 2 fields in line 3, saw 12”的线索,saw 12表示第二行长度为12,第一行长度为2。

当您有如下所示的数据时,如果您跳过行,那么大部分数据将被跳过

data = """1,2,3
1,2,3,4
1,2,3,4,5
1,2
1,2,3,4"""

如果您不想跳过任何行,请执行以下操作

#First lets find the maximum column for all the rows
with open("file_name.csv", 'r') as temp_f:
    # get No of columns in each line
    col_count = [ len(l.split(",")) for l in temp_f.readlines() ]

### Generate column names  (names will be 0, 1, 2, ..., maximum columns - 1)
column_names = [i for i in range(max(col_count))] 

import pandas as pd
# inside range set the maximum value you can see in "Expected 4 fields in line 2, saw 8"
# here will be 8 
data = pd.read_csv("file_name.csv",header = None,names=column_names )

使用range而不是手动设置名称,因为当您有很多列时,这样做会很麻烦。

此外,如果需要使用均匀的数据长度,可以将NaN值填充为0。如。对于聚类(k-means)

new_data = data.fillna(0)

解析器被文件头弄糊涂了。它读取第一行并从该行推断列数。但是前两行并不能代表文件中的实际数据。

用data = pd试试。read_csv(路径,skiprows = 2)

我有一个类似的错误,问题是我有一些转义引号在我的csv文件,需要设置escapechar参数适当。

解决方法简单:在excel中打开csv文件,并保存为csv格式的不同名称文件。再次尝试导入它spyder,你的问题将得到解决!

我也遇到过同样的问题。在同一个源文件上使用pd.read_table()似乎可以工作。我找不到原因,但对我的情况来说,这是一个有用的变通办法。也许有更博学的人能解释清楚为什么它能起作用。

编辑: 我发现,当文件中的某些文本与实际数据的格式不一致时,这个错误就会出现。这通常是页眉或页脚信息(大于一行,所以skip_header不起作用),它们不会被与实际数据相同数量的逗号分隔(当使用read_csv时)。使用read_table使用制表符作为分隔符,可以避免用户当前错误,但引入其他错误。

我通常通过将额外的数据读入文件,然后使用read_csv()方法来解决这个问题。

具体的解决方案可能因您的实际文件而异,但这种方法在一些情况下对我来说是有效的