我试图使用熊猫操作.csv文件,但我得到这个错误:

pandas.parser.CParserError:标记数据错误。C错误:第3行有2个字段,见12

我试着读过熊猫的文件,但一无所获。

我的代码很简单:

path = 'GOOG Key Ratios.csv'
#print(open(path).read())
data = pd.read_csv(path)

我该如何解决这个问题?我应该使用csv模块还是其他语言?

文件来自晨星公司


当前回答

这可能是个问题

数据中的分隔符 第一行,正如@TomAugspurger所指出的

要解决这个问题,请在调用read_csv时尝试指定sep和/或头参数。例如,

df = pandas.read_csv(filepath, sep='delimiter', header=None)

在上面的代码中,sep定义了您的分隔符和header=None,告诉pandas您的源数据没有作为标题/列标题的行。因此,文档说:“如果文件不包含标题行,那么你应该显式地传递header=None”。在这种情况下,pandas会自动为每个字段{0,1,2,…}创建整数索引。

根据文档,分隔符应该不是问题。文档中说“如果sep为None[未指定],将尝试自动确定此值。”然而,我在这方面运气不太好,包括带有明显分隔符的实例。

另一种解决方案可能是尝试自动检测分隔符

# use the first 2 lines of the file to detect separator
temp_lines = csv_file.readline() + '\n' + csv_file.readline()
dialect = csv.Sniffer().sniff(temp_lines, delimiters=';,')

# remember to go back to the start of the file for the next time it's read
csv_file.seek(0) 

df = pd.read_csv(csv_file, sep=dialect.delimiter)

其他回答

我使用的数据集有很多引号(")使用无关的格式。我能够通过包含read_csv()的这个参数来修复这个错误:

quoting=3 # 3 correlates to csv.QUOTE_NONE for pandas

我有一个已有行号的数据集,我使用index_col:

pd.read_csv('train.csv', index_col=0)

对于那些在linux操作系统上使用Python 3有类似问题的人。

pandas.errors.ParserError: Error tokenizing data. C error: Calling
read(nbytes) on source failed. Try engine='python'.

试一试:

df.read_csv('file.csv', encoding='utf8', engine='python')

下面的命令序列工作(我丢失了数据的第一行-no header=None present-,但至少它加载):

Df = pd.read_csv(文件名, usecols =范围(0,42)) df。列=[‘年’,‘莫’,‘天’,“人力资源”,“分”,“秒”,“猎狗”, ' error ', ' rectype ', ' lane ', ' speed ', ' class ', ' length ' ' gvw ' ' esal ' ' w1 ' ' s1 ' ' w2 ' ' s2 ' ' w3 ' ' s3 ' ' w4 ' ' s4 ' ' w5 ' ' s5 ' ' w6 ' ' s6 ' ' w7 ' ' s7 ' ' w8 ' ' s8 ' ' w9 ' ' s9 ' ' w10 ' ' s10 ' ' w11 ', ' s11 ', ' w12 ', ' s12 ', ' w13 ', ' s13 ', ' w14 ']

以下不工作:

Df = pd.read_csv(文件名, 名称=[‘年’,‘莫’,‘天’,“人力资源”,“分”,“秒”,“猎狗”, ' error ', ' rectype ', ' lane ', ' speed ', ' class ', ' length ' ' gvw ' ' esal ' ' w1 ' ' s1 ' ' w2 ' ' s2 ' ' w3 ' ' s3 ' ' w4 ' ' s4 ' ' w5 ' ' s5 ' ' w6 ' ' s6 ' ' w7 ' ' s7 ' ' w8 ' ' s8 ' ' w9 ' ' s9 ' ' w10 ' ' s10 ' ' w11 ', ' s11 ', ' w12 ', ' s12 ', ' w13 ', ' s13 ', ' w14 '], usecols =范围(0,42))

CParserError:标记数据错误。C错误:在1605634行中预期有53个字段,看到54 以下不工作:

df = pd read_csv(文件) 标题=郎)

CParserError:标记数据错误。C错误:在1605634行中预期有53个字段,看到54

因此,在你的问题中,你必须传递usecols=range(0,2)

对于这个问题,我遇到了多种解决方案。很多人也给出了最好的解释。但对于初学者来说,我认为以下两种方法就足够了:

import pandas as pd

#Method 1

data = pd.read_csv('file1.csv', error_bad_lines=False)
#Note that this will cause the offending lines to be skipped.

#Method 2 using sep

data = pd.read_csv('file1.csv', sep='\t')