我试图使用熊猫操作.csv文件,但我得到这个错误:
pandas.parser.CParserError:标记数据错误。C错误:第3行有2个字段,见12
我试着读过熊猫的文件,但一无所获。
我的代码很简单:
path = 'GOOG Key Ratios.csv'
#print(open(path).read())
data = pd.read_csv(path)
我该如何解决这个问题?我应该使用csv模块还是其他语言?
文件来自晨星公司
我试图使用熊猫操作.csv文件,但我得到这个错误:
pandas.parser.CParserError:标记数据错误。C错误:第3行有2个字段,见12
我试着读过熊猫的文件,但一无所获。
我的代码很简单:
path = 'GOOG Key Ratios.csv'
#print(open(path).read())
data = pd.read_csv(path)
我该如何解决这个问题?我应该使用csv模块还是其他语言?
文件来自晨星公司
当前回答
我有一个类似的问题,而试图读取一个制表符分隔表与空格,逗号和引号:
1115794 4218 "k__Bacteria", "p__Firmicutes", "c__Bacilli", "o__Bacillales", "f__Bacillaceae", ""
1144102 3180 "k__Bacteria", "p__Firmicutes", "c__Bacilli", "o__Bacillales", "f__Bacillaceae", "g__Bacillus", ""
368444 2328 "k__Bacteria", "p__Bacteroidetes", "c__Bacteroidia", "o__Bacteroidales", "f__Bacteroidaceae", "g__Bacteroides", ""
import pandas as pd
# Same error for read_table
counts = pd.read_csv(path_counts, sep='\t', index_col=2, header=None, engine = 'c')
pandas.io.common.CParserError: Error tokenizing data. C error: out of memory
这表明它与C解析引擎(这是默认的)有关。也许换成python会改变一切
counts = pd.read_table(path_counts, sep='\t', index_col=2, header=None, engine='python')
Segmentation fault (core dumped)
这是一个不同的错误。 如果我们继续尝试从表中删除空格,来自python-engine的错误再次改变:
1115794 4218 "k__Bacteria","p__Firmicutes","c__Bacilli","o__Bacillales","f__Bacillaceae",""
1144102 3180 "k__Bacteria","p__Firmicutes","c__Bacilli","o__Bacillales","f__Bacillaceae","g__Bacillus",""
368444 2328 "k__Bacteria","p__Bacteroidetes","c__Bacteroidia","o__Bacteroidales","f__Bacteroidaceae","g__Bacteroides",""
_csv.Error: ' ' expected after '"'
很明显,熊猫在解析我们的行时遇到了问题。为了用python引擎解析一个表,我需要事先从表中删除所有的空格和引号。与此同时,c引擎不断崩溃,即使逗号在行。 为了避免创建一个带有替换的新文件,我这样做了,因为我的表很小:
from io import StringIO
with open(path_counts) as f:
input = StringIO(f.read().replace('", ""', '').replace('"', '').replace(', ', ',').replace('\0',''))
counts = pd.read_table(input, sep='\t', index_col=2, header=None, engine='python')
博士tl; 更改解析引擎,尽量避免在数据中使用任何非分隔的引号/逗号/空格。
其他回答
我也遇到过同样的问题。在同一个源文件上使用pd.read_table()似乎可以工作。我找不到原因,但对我的情况来说,这是一个有用的变通办法。也许有更博学的人能解释清楚为什么它能起作用。
编辑: 我发现,当文件中的某些文本与实际数据的格式不一致时,这个错误就会出现。这通常是页眉或页脚信息(大于一行,所以skip_header不起作用),它们不会被与实际数据相同数量的逗号分隔(当使用read_csv时)。使用read_table使用制表符作为分隔符,可以避免用户当前错误,但引入其他错误。
我通常通过将额外的数据读入文件,然后使用read_csv()方法来解决这个问题。
具体的解决方案可能因您的实际文件而异,但这种方法在一些情况下对我来说是有效的
这就是我所做的。
Sep ='::'解决了我的问题:
data=pd.read_csv('C:\\Users\\HP\\Downloads\\NPL ASSINGMENT 2 imdb_labelled\\imdb_labelled.txt',engine='python',header=None,sep='::')
问题可能与文件问题,在我的情况下,问题在重命名文件后得到解决。还没弄清楚原因。
以下是对我有用的(我张贴了这个答案,因为我在谷歌协作笔记本中特别遇到了这个问题):
df = pd.read_csv("/path/foo.csv", delimiter=';', skiprows=0, low_memory=False)
你可以试试;
data = pd.read_csv('file1.csv', sep='\t')