我试图使用熊猫操作.csv文件,但我得到这个错误:
pandas.parser.CParserError:标记数据错误。C错误:第3行有2个字段,见12
我试着读过熊猫的文件,但一无所获。
我的代码很简单:
path = 'GOOG Key Ratios.csv'
#print(open(path).read())
data = pd.read_csv(path)
我该如何解决这个问题?我应该使用csv模块还是其他语言?
文件来自晨星公司
我试图使用熊猫操作.csv文件,但我得到这个错误:
pandas.parser.CParserError:标记数据错误。C错误:第3行有2个字段,见12
我试着读过熊猫的文件,但一无所获。
我的代码很简单:
path = 'GOOG Key Ratios.csv'
#print(open(path).read())
data = pd.read_csv(path)
我该如何解决这个问题?我应该使用csv模块还是其他语言?
文件来自晨星公司
当前回答
对于这个问题,我遇到了多种解决方案。很多人也给出了最好的解释。但对于初学者来说,我认为以下两种方法就足够了:
import pandas as pd
#Method 1
data = pd.read_csv('file1.csv', error_bad_lines=False)
#Note that this will cause the offending lines to be skipped.
#Method 2 using sep
data = pd.read_csv('file1.csv', sep='\t')
其他回答
大多数有用的答案已经提到了,但是我建议将pandas数据框架保存为parquet文件。Parquet文件没有这个问题,同时它们是内存高效的。
我使用的数据集有很多引号(")使用无关的格式。我能够通过包含read_csv()的这个参数来修复这个错误:
quoting=3 # 3 correlates to csv.QUOTE_NONE for pandas
试题:熊猫。read_csv(path, sep = ',',header=None)
在我的例子中,分隔符不是默认的“,”,而是Tab。
pd.read_csv(file_name.csv, sep='\\t',lineterminator='\\r', engine='python', header='infer')
注意:“\t”并不像某些来源所建议的那样有效。“\\t”是必需的。
你也可以试试;
data = pd.read_csv('file1.csv', on_bad_lines='skip')
请注意,这将导致有问题的行被跳过。
Edit
对于熊猫< 1.3.0尝试
data = pd.read_csv("file1.csv", error_bad_lines=False)
根据熊猫API参考。