我试图使用熊猫操作.csv文件,但我得到这个错误:

pandas.parser.CParserError:标记数据错误。C错误:第3行有2个字段,见12

我试着读过熊猫的文件,但一无所获。

我的代码很简单:

path = 'GOOG Key Ratios.csv'
#print(open(path).read())
data = pd.read_csv(path)

我该如何解决这个问题?我应该使用csv模块还是其他语言?

文件来自晨星公司


当前回答

试题:熊猫。read_csv(path, sep = ',',header=None)

其他回答

我也有这个问题,但可能是出于不同的原因。我在我的CSV中有一些尾随逗号,添加了熊猫试图读取的额外列。使用以下方法是可行的,但它只是忽略了不好的行:

data = pd.read_csv('file1.csv', error_bad_lines=False)

如果你想让代码行看起来很丑,你可以这样做:

line     = []
expected = []
saw      = []     
cont     = True 

while cont == True:     
    try:
        data = pd.read_csv('file1.csv',skiprows=line)
        cont = False
    except Exception as e:    
        errortype = e.message.split('.')[0].strip()                                
        if errortype == 'Error tokenizing data':                        
           cerror      = e.message.split(':')[1].strip().replace(',','')
           nums        = [n for n in cerror.split(' ') if str.isdigit(n)]
           expected.append(int(nums[0]))
           saw.append(int(nums[2]))
           line.append(int(nums[1])-1)
         else:
           cerror      = 'Unknown'
           print 'Unknown Error - 222'

if line != []:
    # Handle the errors however you want

我接着写了一个脚本,将这些行重新插入到DataFrame中,因为坏的行将由上述代码中的变量“line”给出。这一切都可以通过简单地使用csv阅读器来避免。希望熊猫的开发人员能够在未来更容易地处理这种情况。

我遇到过这样的错误,一个丢失的引号。我使用映射软件,当导出以逗号分隔的文件时,它会在文本项周围加上引号。使用引号的文本(例如:“=英尺”和“=英寸”)可能会有问题。考虑下面这个例子,5英寸的测井曲线打印很差:

UWI_key,经度,纬度,备注 US42051316890000, 30.4386484, -96.4330734,“可怜的5””

用5英寸作为5英寸的简写,最终会给工作带来麻烦。Excel会简单地去掉额外的引号,但是Pandas没有上面提到的error_bad_lines=False参数就会失效。

一旦你知道了错误的本质,在导入之前,从文本编辑器(例如Sublime text 3或notepad++)中进行查找-替换可能是最简单的。

对于那些在linux操作系统上使用Python 3有类似问题的人。

pandas.errors.ParserError: Error tokenizing data. C error: Calling
read(nbytes) on source failed. Try engine='python'.

试一试:

df.read_csv('file.csv', encoding='utf8', engine='python')

以下是对我有用的(我张贴了这个答案,因为我在谷歌协作笔记本中特别遇到了这个问题):

df = pd.read_csv("/path/foo.csv", delimiter=';', skiprows=0, low_memory=False)

这肯定是分隔符的问题,因为大多数csv csv都是使用sep='/t'创建的,所以尝试使用分隔符/t的制表符(\t)来读取csv。所以,尝试使用下面的代码行打开。

data=pd.read_csv("File_path", sep='\t')