我试图使用熊猫操作.csv文件,但我得到这个错误:

pandas.parser.CParserError:标记数据错误。C错误:第3行有2个字段,见12

我试着读过熊猫的文件,但一无所获。

我的代码很简单:

path = 'GOOG Key Ratios.csv'
#print(open(path).read())
data = pd.read_csv(path)

我该如何解决这个问题?我应该使用csv模块还是其他语言?

文件来自晨星公司


当前回答

问题可能与文件问题,在我的情况下,问题在重命名文件后得到解决。还没弄清楚原因。

其他回答

您的CSV文件可能有可变的列数,read_csv从前几行推断出列数。在这种情况下有两种解决方法:

1)将CSV文件更改为具有最大列数的虚拟第一行(并指定header=[0])

2)或者使用names = list(range(0,N)),其中N是最大列数。

对于这个问题,我遇到了多种解决方案。很多人也给出了最好的解释。但对于初学者来说,我认为以下两种方法就足够了:

import pandas as pd

#Method 1

data = pd.read_csv('file1.csv', error_bad_lines=False)
#Note that this will cause the offending lines to be skipped.

#Method 2 using sep

data = pd.read_csv('file1.csv', sep='\t')

以下是对我有用的(我张贴了这个答案,因为我在谷歌协作笔记本中特别遇到了这个问题):

df = pd.read_csv("/path/foo.csv", delimiter=';', skiprows=0, low_memory=False)

我也遇到过同样的问题。在同一个源文件上使用pd.read_table()似乎可以工作。我找不到原因,但对我的情况来说,这是一个有用的变通办法。也许有更博学的人能解释清楚为什么它能起作用。

编辑: 我发现,当文件中的某些文本与实际数据的格式不一致时,这个错误就会出现。这通常是页眉或页脚信息(大于一行,所以skip_header不起作用),它们不会被与实际数据相同数量的逗号分隔(当使用read_csv时)。使用read_table使用制表符作为分隔符,可以避免用户当前错误,但引入其他错误。

我通常通过将额外的数据读入文件,然后使用read_csv()方法来解决这个问题。

具体的解决方案可能因您的实际文件而异,但这种方法在一些情况下对我来说是有效的

在我的例子中,这是因为csv文件的第一行和最后两行格式与文件的中间内容不同。

因此,我所做的是将csv文件作为字符串打开,解析字符串的内容,然后使用read_csv获取数据帧。

import io
import pandas as pd

file = open(f'{file_path}/{file_name}', 'r')
content = file.read()

# change new line character from '\r\n' to '\n'
lines = content.replace('\r', '').split('\n')

# Remove the first and last 2 lines of the file
# StringIO can be considered as a file stored in memory
df = pd.read_csv(StringIO("\n".join(lines[2:-2])), header=None)