我试图使用熊猫操作.csv文件,但我得到这个错误:

pandas.parser.CParserError:标记数据错误。C错误:第3行有2个字段,见12

我试着读过熊猫的文件,但一无所获。

我的代码很简单:

path = 'GOOG Key Ratios.csv'
#print(open(path).read())
data = pd.read_csv(path)

我该如何解决这个问题?我应该使用csv模块还是其他语言?

文件来自晨星公司


当前回答

我使用的数据集有很多引号(")使用无关的格式。我能够通过包含read_csv()的这个参数来修复这个错误:

quoting=3 # 3 correlates to csv.QUOTE_NONE for pandas

其他回答

我有一个类似的问题,而试图读取一个制表符分隔表与空格,逗号和引号:

1115794 4218    "k__Bacteria", "p__Firmicutes", "c__Bacilli", "o__Bacillales", "f__Bacillaceae", ""
1144102 3180    "k__Bacteria", "p__Firmicutes", "c__Bacilli", "o__Bacillales", "f__Bacillaceae", "g__Bacillus", ""
368444  2328    "k__Bacteria", "p__Bacteroidetes", "c__Bacteroidia", "o__Bacteroidales", "f__Bacteroidaceae", "g__Bacteroides", ""



import pandas as pd
# Same error for read_table
counts = pd.read_csv(path_counts, sep='\t', index_col=2, header=None, engine = 'c')

pandas.io.common.CParserError: Error tokenizing data. C error: out of memory

这表明它与C解析引擎(这是默认的)有关。也许换成python会改变一切

counts = pd.read_table(path_counts, sep='\t', index_col=2, header=None, engine='python')

Segmentation fault (core dumped)

这是一个不同的错误。 如果我们继续尝试从表中删除空格,来自python-engine的错误再次改变:

1115794 4218    "k__Bacteria","p__Firmicutes","c__Bacilli","o__Bacillales","f__Bacillaceae",""
1144102 3180    "k__Bacteria","p__Firmicutes","c__Bacilli","o__Bacillales","f__Bacillaceae","g__Bacillus",""
368444  2328    "k__Bacteria","p__Bacteroidetes","c__Bacteroidia","o__Bacteroidales","f__Bacteroidaceae","g__Bacteroides",""


_csv.Error: '   ' expected after '"'

很明显,熊猫在解析我们的行时遇到了问题。为了用python引擎解析一个表,我需要事先从表中删除所有的空格和引号。与此同时,c引擎不断崩溃,即使逗号在行。 为了避免创建一个带有替换的新文件,我这样做了,因为我的表很小:

from io import StringIO
with open(path_counts) as f:
    input = StringIO(f.read().replace('", ""', '').replace('"', '').replace(', ', ',').replace('\0',''))
    counts = pd.read_table(input, sep='\t', index_col=2, header=None, engine='python')

博士tl; 更改解析引擎,尽量避免在数据中使用任何非分隔的引号/逗号/空格。

在参数中使用分隔符

pd.read_csv(filename, delimiter=",", encoding='utf-8')

它会读。

我相信解决方案,

,engine='python'
, error_bad_lines = False

如果它是虚拟列并且你想要删除它,这将是很好的。 在我的例子中,第二行确实有更多的列,我希望这些列被积分,并且有列数= MAX(列)。

请参考下面我无法阅读的解决方案:

try:
    df_data = pd.read_csv(PATH, header = bl_header, sep = str_sep)
except pd.errors.ParserError as err:
    str_find = 'saw '
    int_position = int(str(err).find(str_find)) + len(str_find)
    str_nbCol = str(err)[int_position:]
    l_col = range(int(str_nbCol))
    df_data = pd.read_csv(PATH, header = bl_header, sep = str_sep, names = l_col)

我有同样的问题,当read_csv: ParserError:错误标记数据。 我只是把旧的csv文件保存为一个新的csv文件。问题解决了!

对于那些在linux操作系统上使用Python 3有类似问题的人。

pandas.errors.ParserError: Error tokenizing data. C error: Calling
read(nbytes) on source failed. Try engine='python'.

试一试:

df.read_csv('file.csv', encoding='utf8', engine='python')