我试图使用熊猫操作.csv文件,但我得到这个错误:

pandas.parser.CParserError:标记数据错误。C错误:第3行有2个字段,见12

我试着读过熊猫的文件,但一无所获。

我的代码很简单:

path = 'GOOG Key Ratios.csv'
#print(open(path).read())
data = pd.read_csv(path)

我该如何解决这个问题?我应该使用csv模块还是其他语言?

文件来自晨星公司


当前回答

我使用的数据集有很多引号(")使用无关的格式。我能够通过包含read_csv()的这个参数来修复这个错误:

quoting=3 # 3 correlates to csv.QUOTE_NONE for pandas

其他回答

下面的命令序列工作(我丢失了数据的第一行-no header=None present-,但至少它加载):

Df = pd.read_csv(文件名, usecols =范围(0,42)) df。列=[‘年’,‘莫’,‘天’,“人力资源”,“分”,“秒”,“猎狗”, ' error ', ' rectype ', ' lane ', ' speed ', ' class ', ' length ' ' gvw ' ' esal ' ' w1 ' ' s1 ' ' w2 ' ' s2 ' ' w3 ' ' s3 ' ' w4 ' ' s4 ' ' w5 ' ' s5 ' ' w6 ' ' s6 ' ' w7 ' ' s7 ' ' w8 ' ' s8 ' ' w9 ' ' s9 ' ' w10 ' ' s10 ' ' w11 ', ' s11 ', ' w12 ', ' s12 ', ' w13 ', ' s13 ', ' w14 ']

以下不工作:

Df = pd.read_csv(文件名, 名称=[‘年’,‘莫’,‘天’,“人力资源”,“分”,“秒”,“猎狗”, ' error ', ' rectype ', ' lane ', ' speed ', ' class ', ' length ' ' gvw ' ' esal ' ' w1 ' ' s1 ' ' w2 ' ' s2 ' ' w3 ' ' s3 ' ' w4 ' ' s4 ' ' w5 ' ' s5 ' ' w6 ' ' s6 ' ' w7 ' ' s7 ' ' w8 ' ' s8 ' ' w9 ' ' s9 ' ' w10 ' ' s10 ' ' w11 ', ' s11 ', ' w12 ', ' s12 ', ' w13 ', ' s13 ', ' w14 '], usecols =范围(0,42))

CParserError:标记数据错误。C错误:在1605634行中预期有53个字段,看到54 以下不工作:

df = pd read_csv(文件) 标题=郎)

CParserError:标记数据错误。C错误:在1605634行中预期有53个字段,看到54

因此,在你的问题中,你必须传递usecols=range(0,2)

问题可能与文件问题,在我的情况下,问题在重命名文件后得到解决。还没弄清楚原因。

我也有这个问题,但可能是出于不同的原因。我在我的CSV中有一些尾随逗号,添加了熊猫试图读取的额外列。使用以下方法是可行的,但它只是忽略了不好的行:

data = pd.read_csv('file1.csv', error_bad_lines=False)

如果你想让代码行看起来很丑,你可以这样做:

line     = []
expected = []
saw      = []     
cont     = True 

while cont == True:     
    try:
        data = pd.read_csv('file1.csv',skiprows=line)
        cont = False
    except Exception as e:    
        errortype = e.message.split('.')[0].strip()                                
        if errortype == 'Error tokenizing data':                        
           cerror      = e.message.split(':')[1].strip().replace(',','')
           nums        = [n for n in cerror.split(' ') if str.isdigit(n)]
           expected.append(int(nums[0]))
           saw.append(int(nums[2]))
           line.append(int(nums[1])-1)
         else:
           cerror      = 'Unknown'
           print 'Unknown Error - 222'

if line != []:
    # Handle the errors however you want

我接着写了一个脚本,将这些行重新插入到DataFrame中,因为坏的行将由上述代码中的变量“line”给出。这一切都可以通过简单地使用csv阅读器来避免。希望熊猫的开发人员能够在未来更容易地处理这种情况。

你可以试试;

data = pd.read_csv('file1.csv', sep='\t')

这看起来很丑,但你会有你的数据框架

import re
path = 'GOOG Key Ratios.csv'

try:
    data = pd.read_csv(path)
except Exception as e:
    val = re.findall('tokenizing.{1,100}\s*Expected\s*(\d{1,2})\s*',str(e),re.I)
    data = pd.read_csv(path, skiprows=int(val[0])-1)