我想写一个函数,它以一个字母数组作为参数,并从中选择一些字母。

假设您提供了一个包含8个字母的数组,并希望从中选择3个字母。那么你应该得到:

8! / ((8 - 3)! * 3!) = 56

数组(或单词),每个数组由3个字母组成。


当前回答

为此,我在SQL Server 2005中创建了一个解决方案,并将其发布在我的网站上:http://www.jessemclain.com/downloads/code/sql/fn_GetMChooseNCombos.sql.htm

下面是一个例子来说明用法:

SELECT * FROM dbo.fn_GetMChooseNCombos('ABCD', 2, '')

结果:

Word
----
AB
AC
AD
BC
BD
CD

(6 row(s) affected)

其他回答

这是我用c++写的命题

我尽可能少地限制迭代器类型,所以这个解决方案假设只有前向迭代器,它可以是const_iterator。这应该适用于任何标准容器。在参数没有意义的情况下,它抛出std:: invalid_argument

#include <vector>
#include <stdexcept>

template <typename Fci> // Fci - forward const iterator
std::vector<std::vector<Fci> >
enumerate_combinations(Fci begin, Fci end, unsigned int combination_size)
{
    if(begin == end && combination_size > 0u)
        throw std::invalid_argument("empty set and positive combination size!");
    std::vector<std::vector<Fci> > result; // empty set of combinations
    if(combination_size == 0u) return result; // there is exactly one combination of
                                              // size 0 - emty set
    std::vector<Fci> current_combination;
    current_combination.reserve(combination_size + 1u); // I reserve one aditional slot
                                                        // in my vector to store
                                                        // the end sentinel there.
                                                        // The code is cleaner thanks to that
    for(unsigned int i = 0u; i < combination_size && begin != end; ++i, ++begin)
    {
        current_combination.push_back(begin); // Construction of the first combination
    }
    // Since I assume the itarators support only incrementing, I have to iterate over
    // the set to get its size, which is expensive. Here I had to itrate anyway to  
    // produce the first cobination, so I use the loop to also check the size.
    if(current_combination.size() < combination_size)
        throw std::invalid_argument("combination size > set size!");
    result.push_back(current_combination); // Store the first combination in the results set
    current_combination.push_back(end); // Here I add mentioned earlier sentinel to
                                        // simplyfy rest of the code. If I did it 
                                        // earlier, previous statement would get ugly.
    while(true)
    {
        unsigned int i = combination_size;
        Fci tmp;                            // Thanks to the sentinel I can find first
        do                                  // iterator to change, simply by scaning
        {                                   // from right to left and looking for the
            tmp = current_combination[--i]; // first "bubble". The fact, that it's 
            ++tmp;                          // a forward iterator makes it ugly but I
        }                                   // can't help it.
        while(i > 0u && tmp == current_combination[i + 1u]);

        // Here is probably my most obfuscated expression.
        // Loop above looks for a "bubble". If there is no "bubble", that means, that
        // current_combination is the last combination, Expression in the if statement
        // below evaluates to true and the function exits returning result.
        // If the "bubble" is found however, the ststement below has a sideeffect of 
        // incrementing the first iterator to the left of the "bubble".
        if(++current_combination[i] == current_combination[i + 1u])
            return result;
        // Rest of the code sets posiotons of the rest of the iterstors
        // (if there are any), that are to the right of the incremented one,
        // to form next combination

        while(++i < combination_size)
        {
            current_combination[i] = current_combination[i - 1u];
            ++current_combination[i];
        }
        // Below is the ugly side of using the sentinel. Well it had to haave some 
        // disadvantage. Try without it.
        result.push_back(std::vector<Fci>(current_combination.begin(),
                                          current_combination.end() - 1));
    }
}

我发现这个线程很有用,我想我会添加一个Javascript解决方案,你可以弹出到Firebug。取决于你的JS引擎,如果起始字符串很大,可能会花一点时间。

function string_recurse(active, rest) {
    if (rest.length == 0) {
        console.log(active);
    } else {
        string_recurse(active + rest.charAt(0), rest.substring(1, rest.length));
        string_recurse(active, rest.substring(1, rest.length));
    }
}
string_recurse("", "abc");

输出如下:

abc
ab
ac
a
bc
b
c

在VB。Net,该算法从一组数字(PoolArray)中收集n个数字的所有组合。例如,从“8,10,20,33,41,44,47”中选择5个选项的所有组合。

Sub CreateAllCombinationsOfPicksFromPool(ByVal PicksArray() As UInteger, ByVal PicksIndex As UInteger, ByVal PoolArray() As UInteger, ByVal PoolIndex As UInteger)
    If PicksIndex < PicksArray.Length Then
        For i As Integer = PoolIndex To PoolArray.Length - PicksArray.Length + PicksIndex
            PicksArray(PicksIndex) = PoolArray(i)
            CreateAllCombinationsOfPicksFromPool(PicksArray, PicksIndex + 1, PoolArray, i + 1)
        Next
    Else
        ' completed combination. build your collections using PicksArray.
    End If
End Sub

        Dim PoolArray() As UInteger = Array.ConvertAll("8,10,20,33,41,44,47".Split(","), Function(u) UInteger.Parse(u))
        Dim nPicks as UInteger = 5
        Dim Picks(nPicks - 1) As UInteger
        CreateAllCombinationsOfPicksFromPool(Picks, 0, PoolArray, 0)

我的实现在c/c++

#include <unistd.h>
#include <stdio.h>
#include <iconv.h>
#include <string.h>
#include <errno.h>
#include <stdlib.h>

int main(int argc, char **argv)
{
    int opt = -1, min_len = 0, max_len = 0;
    char ofile[256], fchar[2], tchar[2];
    ofile[0] = 0;
    fchar[0] = 0;
    tchar[0] = 0;
    while((opt = getopt(argc, argv, "o:f:t:l:L:")) != -1)
    {
            switch(opt)
            {
                    case 'o':
                    strncpy(ofile, optarg, 255);
                    break;
                    case 'f':
                    strncpy(fchar, optarg, 1);
                    break;
                    case 't':
                    strncpy(tchar, optarg, 1);
                    break;
                    case 'l':
                    min_len = atoi(optarg);
                    break;
                    case 'L':
                    max_len = atoi(optarg);
                    break;
                    default:
                    printf("usage: %s -oftlL\n\t-o output file\n\t-f from char\n\t-t to char\n\t-l min seq len\n\t-L max seq len", argv[0]);
            }
    }
if(max_len < 1)
{
    printf("error, length must be more than 0\n");
    return 1;
}
if(min_len > max_len)
{
    printf("error, max length must be greater or equal min_length\n");
    return 1;
}
if((int)fchar[0] > (int)tchar[0])
{
    printf("error, invalid range specified\n");
    return 1;
}
FILE *out = fopen(ofile, "w");
if(!out)
{
    printf("failed to open input file with error: %s\n", strerror(errno));
    return 1;
}
int cur_len = min_len;
while(cur_len <= max_len)
{
    char buf[cur_len];
    for(int i = 0; i < cur_len; i++)
        buf[i] = fchar[0];
    fwrite(buf, cur_len, 1, out);
    fwrite("\n", 1, 1, out);
    while(buf[0] != (tchar[0]+1))
    {
        while(buf[cur_len-1] < tchar[0])
        {
            (int)buf[cur_len-1]++;
            fwrite(buf, cur_len, 1, out);
            fwrite("\n", 1, 1, out);
        }
        if(cur_len < 2)
            break;
        if(buf[0] == tchar[0])
        {
            bool stop = true;
            for(int i = 1; i < cur_len; i++)
            {
                if(buf[i] != tchar[0])
                {
                    stop = false;
                    break;
                }
            }
            if(stop)
                break;
        }
        int u = cur_len-2;
        for(; u>=0 && buf[u] >= tchar[0]; u--)
            ;
        (int)buf[u]++;
        for(int i = u+1; i < cur_len; i++)
            buf[i] = fchar[0];
        fwrite(buf, cur_len, 1, out);
        fwrite("\n", 1, 1, out);
    }
    cur_len++;
}
fclose(out);
return 0;
}

这里我的实现在c++,它写所有的组合到指定的文件,但行为可以改变,我在生成各种字典,它接受最小和最大长度和字符范围,目前只有ANSI支持,它足以满足我的需求

下面是Clojure版本,它使用了我在OCaml实现答案中描述的相同算法:

(defn select
  ([items]
     (select items 0 (inc (count items))))
  ([items n1 n2]
     (reduce concat
             (map #(select % items)
                  (range n1 (inc n2)))))
  ([n items]
     (let [
           lmul (fn [a list-of-lists-of-bs]
                     (map #(cons a %) list-of-lists-of-bs))
           ]
       (if (= n (count items))
         (list items)
         (if (empty? items)
           items
           (concat
            (select n (rest items))
            (lmul (first items) (select (dec n) (rest items))))))))) 

它提供了三种调用方法:

(a)按问题要求,选出n项:

  user=> (count (select 3 "abcdefgh"))
  56

(b) n1至n2个选定项目:

user=> (select '(1 2 3 4) 2 3)
((3 4) (2 4) (2 3) (1 4) (1 3) (1 2) (2 3 4) (1 3 4) (1 2 4) (1 2 3))

(c)在0至所选项目的集合大小之间:

user=> (select '(1 2 3))
(() (3) (2) (1) (2 3) (1 3) (1 2) (1 2 3))