我想写一个函数,它以一个字母数组作为参数,并从中选择一些字母。

假设您提供了一个包含8个字母的数组,并希望从中选择3个字母。那么你应该得到:

8! / ((8 - 3)! * 3!) = 56

数组(或单词),每个数组由3个字母组成。


当前回答

下面是一个简单易懂的递归c++解决方案:

#include<vector>
using namespace std;

template<typename T>
void ksubsets(const vector<T>& arr, unsigned left, unsigned idx,
    vector<T>& lst, vector<vector<T>>& res)
{
    if (left < 1) {
        res.push_back(lst);
        return;
    }
    for (unsigned i = idx; i < arr.size(); i++) {
        lst.push_back(arr[i]);
        ksubsets(arr, left - 1, i + 1, lst, res);
        lst.pop_back();
    }
}

int main()
{
    vector<int> arr = { 1, 2, 3, 4, 5 };
    unsigned left = 3;
    vector<int> lst;
    vector<vector<int>> res;
    ksubsets<int>(arr, left, 0, lst, res);
    // now res has all the combinations
}

其他回答

Haskell中的简单递归算法

import Data.List

combinations 0 lst = [[]]
combinations n lst = do
    (x:xs) <- tails lst
    rest   <- combinations (n-1) xs
    return $ x : rest

我们首先定义特殊情况,即选择零元素。它产生一个单一的结果,这是一个空列表(即一个包含空列表的列表)。

对于n> 0, x遍历列表中的每一个元素xs是x之后的每一个元素。

Rest通过对组合的递归调用从xs中选取n - 1个元素。该函数的最终结果是一个列表,其中每个元素都是x: rest(即对于x和rest的每个不同值,x为头部,rest为尾部的列表)。

> combinations 3 "abcde"
["abc","abd","abe","acd","ace","ade","bcd","bce","bde","cde"]

当然,由于Haskell是懒惰的,列表是根据需要逐渐生成的,因此您可以部分计算指数级的大组合。

> let c = combinations 8 "abcdefghijklmnopqrstuvwxyz"
> take 10 c
["abcdefgh","abcdefgi","abcdefgj","abcdefgk","abcdefgl","abcdefgm","abcdefgn",
 "abcdefgo","abcdefgp","abcdefgq"]

https://gist.github.com/3118596

JavaScript有一个实现。它有函数来获得k组合和任意对象数组的所有组合。例子:

k_combinations([1,2,3], 2)
-> [[1,2], [1,3], [2,3]]

combinations([1,2,3])
-> [[1],[2],[3],[1,2],[1,3],[2,3],[1,2,3]]

这里你有一个用c#编写的该算法的惰性评估版本:

    static bool nextCombination(int[] num, int n, int k)
    {
        bool finished, changed;

        changed = finished = false;

        if (k > 0)
        {
            for (int i = k - 1; !finished && !changed; i--)
            {
                if (num[i] < (n - 1) - (k - 1) + i)
                {
                    num[i]++;
                    if (i < k - 1)
                    {
                        for (int j = i + 1; j < k; j++)
                        {
                            num[j] = num[j - 1] + 1;
                        }
                    }
                    changed = true;
                }
                finished = (i == 0);
            }
        }

        return changed;
    }

    static IEnumerable Combinations<T>(IEnumerable<T> elements, int k)
    {
        T[] elem = elements.ToArray();
        int size = elem.Length;

        if (k <= size)
        {
            int[] numbers = new int[k];
            for (int i = 0; i < k; i++)
            {
                numbers[i] = i;
            }

            do
            {
                yield return numbers.Select(n => elem[n]);
            }
            while (nextCombination(numbers, size, k));
        }
    }

及测试部分:

    static void Main(string[] args)
    {
        int k = 3;
        var t = new[] { "dog", "cat", "mouse", "zebra"};

        foreach (IEnumerable<string> i in Combinations(t, k))
        {
            Console.WriteLine(string.Join(",", i));
        }
    }

希望这对你有帮助!


另一种版本,迫使所有前k个组合首先出现,然后是所有前k+1个组合,然后是所有前k+2个组合,等等。这意味着如果你对数组进行排序,最重要的在最上面,它会把它们逐渐扩展到下一个——只有在必须这样做的时候。

private static bool NextCombinationFirstsAlwaysFirst(int[] num, int n, int k)
{
    if (k > 1 && NextCombinationFirstsAlwaysFirst(num, num[k - 1], k - 1))
        return true;

    if (num[k - 1] + 1 == n)
        return false;

    ++num[k - 1];
    for (int i = 0; i < k - 1; ++i)
        num[i] = i;

    return true;
}

例如,如果你在k=3, n=5上运行第一个方法("nextCombination"),你会得到:

0 1 2
0 1 3
0 1 4
0 2 3
0 2 4
0 3 4
1 2 3
1 2 4
1 3 4
2 3 4

但如果你跑

int[] nums = new int[k];
for (int i = 0; i < k; ++i)
    nums[i] = i;
do
{
    Console.WriteLine(string.Join(" ", nums));
}
while (NextCombinationFirstsAlwaysFirst(nums, n, k));

你会得到这个(为了清晰起见,我添加了空行):

0 1 2

0 1 3
0 2 3
1 2 3

0 1 4
0 2 4
1 2 4
0 3 4
1 3 4
2 3 4

它只在必须添加时才添加“4”,而且在添加“4”之后,它只在必须添加时再添加“3”(在执行01、02、12之后)。

这是一个为nCk生成组合的递归程序。假设集合中的元素从1到n

#include<stdio.h>
#include<stdlib.h>

int nCk(int n,int loopno,int ini,int *a,int k)
{
    static int count=0;
    int i;
    loopno--;
    if(loopno<0)
    {
        a[k-1]=ini;
        for(i=0;i<k;i++)
        {
            printf("%d,",a[i]);
        }
        printf("\n");
        count++;
        return 0;
    }
    for(i=ini;i<=n-loopno-1;i++)
    {
        a[k-1-loopno]=i+1;
        nCk(n,loopno,i+1,a,k);
    }
    if(ini==0)
    return count;
    else
    return 0;
}

void main()
{
    int n,k,*a,count;
    printf("Enter the value of n and k\n");
    scanf("%d %d",&n,&k);
    a=(int*)malloc(k*sizeof(int));
    count=nCk(n,k,0,a,k);
    printf("No of combinations=%d\n",count);
}

下面是我的Scala解决方案:

def combinations[A](s: List[A], k: Int): List[List[A]] = 
  if (k > s.length) Nil
  else if (k == 1) s.map(List(_))
  else combinations(s.tail, k - 1).map(s.head :: _) ::: combinations(s.tail, k)