我刚刚搞砸了一次面试,而且我的面试问题几乎毫无进展。
给定一个数,找出下一个与之完全相同的更大的数 作为原始数字的数字集。例如:给定38276返回 38627
我想从找到第一个比个位小的数字的下标开始。然后我将旋转子集中的最后一个数字,这样它是由相同的数字组成的下一个最大的数字,但卡住了。
面试官还建议我试着一次换一个数字,但我搞不懂算法,只能盯着屏幕看20-30分钟。不用说,我想我还得继续找工作。
我刚刚搞砸了一次面试,而且我的面试问题几乎毫无进展。
给定一个数,找出下一个与之完全相同的更大的数 作为原始数字的数字集。例如:给定38276返回 38627
我想从找到第一个比个位小的数字的下标开始。然后我将旋转子集中的最后一个数字,这样它是由相同的数字组成的下一个最大的数字,但卡住了。
面试官还建议我试着一次换一个数字,但我搞不懂算法,只能盯着屏幕看20-30分钟。不用说,我想我还得继续找工作。
当前回答
我们需要找到最右边的0位,后面是1,然后将最右边的0位翻转为1。
例如,我们的输入是487,也就是二进制的111100111。
我们把后面有1的0往右翻转最多
所以我们得到 111101111
但是现在我们多了一个1,少了一个0,所以我们减少了右边1的个数 位增加1,并将0位的no增加1,得到
111101011 -二进制491
int getNextNumber(int input)
{
int flipPosition=0;
int trailingZeros=0;
int trailingOnes=0;
int copy = input;
//count trailing zeros
while(copy != 0 && (copy&1) == 0 )
{
++trailingZeros;
//test next bit
copy = copy >> 1;
}
//count trailing ones
while(copy != 0 && (copy&1) == 1 )
{
++trailingOnes;
//test next bit
copy = copy >> 1;
}
//if we have no 1's (i.e input is 0) we cannot form another pattern with
//the same number of 1's which will increment the input, or if we have leading consecutive
//ones followed by consecutive 0's up to the maximum bit size of a int
//we cannot increase the input whilst preserving the original no of 0's and
//1's in the bit pattern
if(trailingZeros + trailingOnes == 0 || trailingZeros + trailingOnes == 31)
return -1;
//flip first 0 followed by a 1 found from the right of the bit pattern
flipPosition = trailingZeros + trailingOnes+1;
input |= 1<<(trailingZeros+trailingOnes);
//clear fields to the right of the flip position
int mask = ~0 << (trailingZeros+trailingOnes);
input &= mask;
//insert a bit pattern to the right of the flip position that will contain
//one less 1 to compensate for the bit we switched from 0 to 1
int insert = flipPosition-1;
input |= insert;
return input;
}
其他回答
public static void findNext(long number){
/* convert long to string builder */
StringBuilder s = new StringBuilder();
s.append(number);
int N = s.length();
int index=-1,pivot=-1;
/* from tens position find the number (called pivot) less than the number in right */
for(int i=N-2;i>=0;i--){
int a = s.charAt(i)-'0';
int b = s.charAt(i+1)-'0';
if(a<b){
pivot = a;
index =i;
break;
}
}
/* if no such pivot then no solution */
if(pivot==-1) System.out.println(" No such number ")
else{
/* find the minimum highest number to the right higher than the pivot */
int nextHighest=Integer.MAX_VALUE, swapIndex=-1;
for(int i=index+1;i<N;i++){
int a = s.charAt(i)-'0';
if(a>pivot && a<nextHighest){
nextHighest = a;
swapIndex=i;
}
}
/* swap the pivot and next highest number */
s.replace(index,index+1,""+nextHighest);
s.replace(swapIndex,swapIndex+1,""+pivot);
/* sort everything to right of pivot and replace the sorted answer to right of pivot */
char [] sort = s.substring(index+1).toCharArray();
Arrays.sort(sort);
s.replace(index+1,N,String.copyValueOf(sort));
System.out.println("next highest number is "+s);
}
}
private static int GetNextHigherNumber(int num)
{
//given 38276 return 38627
string numberstring = num.ToString();
char[] sNum = numberstring.ToCharArray();
for (int i = sNum.Length - 1; i > 0; i--)
{
for (int j = i - 1; j > 0; j--)
{
if (sNum[i] > sNum[j])
{
for (int x = i; x > j; x--)
{
char chr = sNum[x];
sNum[x] = sNum[x - 1];
sNum[x - 1] = chr;
}
i = 0;
break;
}
}
}
numberstring = string.Empty;
for(int x= 0 ; x<sNum.Length;x++)
{
numberstring += sNum[x].ToString();
}
return Convert.ToInt32(numberstring);
}
这是另一个Java实现,可以开箱即用,并通过测试完成。 这个解决方案是O(n)个空间和时间,使用老式的动态规划。
如果你想用蛮力,有两种蛮力:
排列所有的东西,然后选择最小值更高的:O(n!) 与此实现类似,但不是DP,而是强制填充的步骤 indexToIndexOfNextSmallerLeft映射将在O(n²)中运行。
import java.util.Arrays;
import java.util.HashMap;
import java.util.Map;
import org.junit.Test;
import static org.junit.Assert.assertEquals;
public class NextHigherSameDigits {
public long next(final long num) {
final char[] chars = String.valueOf(num).toCharArray();
final int[] digits = new int[chars.length];
for (int i = 0; i < chars.length; i++) {
digits[i] = Character.getNumericValue(chars[i]);
}
final Map<Integer, Integer> indexToIndexOfNextSmallerLeft = new HashMap<>();
indexToIndexOfNextSmallerLeft.put(1, digits[1] > digits[0] ? 0 : null);
for (int i = 2; i < digits.length; i++) {
final int left = digits[i - 1];
final int current = digits[i];
Integer indexOfNextSmallerLeft = null;
if (current > left) {
indexOfNextSmallerLeft = i - 1;
} else {
final Integer indexOfnextSmallerLeftOfLeft = indexToIndexOfNextSmallerLeft.get(i - 1);
final Integer nextSmallerLeftOfLeft = indexOfnextSmallerLeftOfLeft == null ? null :
digits[indexOfnextSmallerLeftOfLeft];
if (nextSmallerLeftOfLeft != null && current > nextSmallerLeftOfLeft) {
indexOfNextSmallerLeft = indexOfnextSmallerLeftOfLeft;
} else {
indexOfNextSmallerLeft = null;
}
}
indexToIndexOfNextSmallerLeft.put(i, indexOfNextSmallerLeft);
}
Integer maxOfindexOfNextSmallerLeft = null;
Integer indexOfMinToSwapWithNextSmallerLeft = null;
for (int i = digits.length - 1; i >= 1; i--) {
final Integer indexOfNextSmallerLeft = indexToIndexOfNextSmallerLeft.get(i);
if (maxOfindexOfNextSmallerLeft == null ||
(indexOfNextSmallerLeft != null && indexOfNextSmallerLeft > maxOfindexOfNextSmallerLeft)) {
maxOfindexOfNextSmallerLeft = indexOfNextSmallerLeft;
if (maxOfindexOfNextSmallerLeft != null && (indexOfMinToSwapWithNextSmallerLeft == null ||
digits[i] < digits[indexOfMinToSwapWithNextSmallerLeft])) {
indexOfMinToSwapWithNextSmallerLeft = i;
}
}
}
if (maxOfindexOfNextSmallerLeft == null) {
return -1;
} else {
swap(digits, indexOfMinToSwapWithNextSmallerLeft, maxOfindexOfNextSmallerLeft);
reverseRemainingOfArray(digits, maxOfindexOfNextSmallerLeft + 1);
return backToLong(digits);
}
}
private void reverseRemainingOfArray(final int[] digits, final int startIndex) {
final int[] tail = Arrays.copyOfRange(digits, startIndex, digits.length);
for (int i = tail.length - 1; i >= 0; i--) {
digits[(digits.length - 1) - i] = tail[i];
}
}
private void swap(final int[] digits, final int currentIndex, final int indexOfNextSmallerLeft) {
int temp = digits[currentIndex];
digits[currentIndex] = digits[indexOfNextSmallerLeft];
digits[indexOfNextSmallerLeft] = temp;
}
private long backToLong(int[] digits) {
StringBuilder sb = new StringBuilder();
for (long i : digits) {
sb.append(String.valueOf(i));
}
return Long.parseLong(sb.toString());
}
@Test
public void test() {
final long input1 = 34722641;
final long expected1 = 34724126;
final long output1 = new NextHigherSameDigits().next(input1);
assertEquals(expected1, output1);
final long input2 = 38276;
final long expected2 = 38627;
final long output2 = new NextHigherSameDigits().next(input2);
assertEquals(expected2, output2);
final long input3 = 54321;
final long expected3 = -1;
final long output3 = new NextHigherSameDigits().next(input3);
assertEquals(expected3, output3);
final long input4 = 123456784987654321L;
final long expected4 = 123456785123446789L;
final long output4 = new NextHigherSameDigits().next(input4);
assertEquals(expected4, output4);
final long input5 = 9999;
final long expected5 = -1;
final long output5 = new NextHigherSameDigits().next(input5);
assertEquals(expected5, output5);
}
}
这里是Java实现
public static int nextHigherNumber(int number) {
Integer[] array = convertToArray(number);
int pivotIndex = pivotMaxIndex(array);
int digitInFirstSequence = pivotIndex -1;
int lowerDigitIndexInSecondSequence = lowerDigitIndex(array[digitInFirstSequence], array, pivotIndex);
swap(array, digitInFirstSequence, lowerDigitIndexInSecondSequence);
doRercursiveQuickSort(array, pivotIndex, array.length - 1);
return arrayToInteger(array);
}
public static Integer[] convertToArray(int number) {
int i = 0;
int length = (int) Math.log10(number);
int divisor = (int) Math.pow(10, length);
Integer temp[] = new Integer[length + 1];
while (number != 0) {
temp[i] = number / divisor;
if (i < length) {
++i;
}
number = number % divisor;
if (i != 0) {
divisor = divisor / 10;
}
}
return temp;
}
private static int pivotMaxIndex(Integer[] array) {
int index = array.length - 1;
while(index > 0) {
if (array[index-1] < array[index]) {
break;
}
index--;
}
return index;
}
private static int lowerDigitIndex(int number, Integer[] array, int fromIndex) {
int lowerMaxIndex = fromIndex;
int lowerMax = array[lowerMaxIndex];
while (fromIndex < array.length - 1) {
if (array[fromIndex]> number && lowerMax > array[fromIndex]) {
lowerMaxIndex = fromIndex;
}
fromIndex ++;
}
return lowerMaxIndex;
}
public static int arrayToInteger(Integer[] array) {
int number = 0;
for (int i = 0; i < array.length; i++) {
number+=array[i] * Math.pow(10, array.length-1-i);
}
return number;
}
这里是单元测试
@Test
public void nextHigherNumberTest() {
assertThat(ArrayUtils.nextHigherNumber(34722641), is(34724126));
assertThat(ArrayUtils.nextHigherNumber(123), is(132));
}
function foo(num){
sortOld = num.toString().split("").sort().join('');
do{
num++;
sortNew = num.toString().split("").sort().join('');
}while(sortNew!==sortOld);
return num;
}