我刚刚搞砸了一次面试,而且我的面试问题几乎毫无进展。

给定一个数,找出下一个与之完全相同的更大的数 作为原始数字的数字集。例如:给定38276返回 38627

我想从找到第一个比个位小的数字的下标开始。然后我将旋转子集中的最后一个数字,这样它是由相同的数字组成的下一个最大的数字,但卡住了。

面试官还建议我试着一次换一个数字,但我搞不懂算法,只能盯着屏幕看20-30分钟。不用说,我想我还得继续找工作。


当前回答

我们需要找到最右边的0位,后面是1,然后将最右边的0位翻转为1。

例如,我们的输入是487,也就是二进制的111100111。

我们把后面有1的0往右翻转最多

所以我们得到 111101111

但是现在我们多了一个1,少了一个0,所以我们减少了右边1的个数 位增加1,并将0位的no增加1,得到

111101011 -二进制491

int getNextNumber(int input)
{
    int flipPosition=0;
    int trailingZeros=0;
    int trailingOnes=0;
    int copy = input;

    //count trailing zeros
    while(copy != 0 && (copy&1) == 0 )
    {
        ++trailingZeros;

        //test next bit
        copy = copy >> 1;
    }

    //count trailing ones
    while(copy != 0 && (copy&1) == 1 )
    {
        ++trailingOnes;

        //test next bit
        copy = copy >> 1;
    }

    //if we have no 1's (i.e input is 0) we cannot form another pattern with 
    //the same number of 1's which will increment the input, or if we have leading consecutive
    //ones followed by consecutive 0's up to the maximum bit size of a int
    //we cannot increase the input whilst preserving the original no of 0's and
    //1's in the bit pattern
    if(trailingZeros + trailingOnes  == 0 || trailingZeros + trailingOnes == 31)
        return -1;

    //flip first 0 followed by a 1 found from the right of the bit pattern
    flipPosition = trailingZeros + trailingOnes+1;
    input |= 1<<(trailingZeros+trailingOnes);

    //clear fields to the right of the flip position
    int mask = ~0 << (trailingZeros+trailingOnes);
    input &= mask;

    //insert a bit pattern to the right of the flip position that will contain
    //one less 1 to compensate for the bit we switched from 0 to 1
    int insert = flipPosition-1;
    input |= insert;

    return input;
}

其他回答

import java.util.Scanner;
public class Big {

    public static void main(String[] args) {


        Scanner sc = new Scanner(System.in);
        System.out.print("Enter the number ");
        String str = sc.next();
        int t=0;

        char[] chars  = str.toCharArray();



        for(int i=str.length()-1,j=str.length()-2;j>=0;j--)
        {


                if((int)chars[i]>(int)chars[j])
                {
                    t = (int)chars[i];
                    chars[i] = chars[j];
                    chars[j]=(char)t;

                    for(int k=j+1;k<str.length()-1;k++)
                    {
                        for(int l=k+1;l<str.length();l++)
                        {
                            if(chars[k]>chars[l])
                            {
                                int m = (int)chars[k];
                                chars[k] = chars[l];
                                chars[l]=(char)m;
                            }
                        }
                    }

                    break;
                }






        }
        System.out.print("The next Big number is: ");

        for(int i=0;i<str.length();i++){
            System.out.print(chars[i]);
        }
        sc.close();
    }


}

至少,这里有几个基于字符串的暴力解决方案的例子,你应该能够马上想到:

38276中的数字排序为23678

38627排序的数字列表是23678

蛮力增量,排序和比较

沿着蛮力解决方案将转换为字符串 然后用这些数字强行找出所有可能的数字。

从它们中创建int,把它们放在一个列表中并排序, 获取目标条目之后的下一个条目。

如果你花了30分钟在这个问题上,却没有想出一个蛮力的方法,我也不会雇用你。

在商业世界中,一个不优雅、缓慢和笨拙但能完成工作的解决方案总是比没有解决方案更有价值,事实上,这几乎描述了所有不优雅、缓慢和笨拙的商业软件。

解决方案(在Java中)可能是以下(我相信这里的朋友可以找到更好的): 从字符串的末尾开始交换数字,直到得到一个更高的数字。 也就是说,首先从下位开始移动。然后到达下一个更高的地方,直到你到达下一个更高的地方。 然后对剩下的进行排序。 在你的例子中,你会得到:

38276 --> 38267 (smaller) --> 38627 Found it    
    ^        ^                  ^        

 public static int nextDigit(int number){
    String num = String.valueOf(number);        
    int stop = 0;       
    char [] chars = null;
    outer:
        for(int i = num.length() - 1; i > 0; i--){          
            chars = num.toCharArray();
            for(int j = i; j > 0; j--){
                char temp = chars[j];
                chars[j] = chars[j - 1];
                chars[j - 1] = temp;
                if(Integer.valueOf(new String(chars)) > number){
                    stop = j;                   
                    break outer;                                
                }               
            }               
        }

    Arrays.sort(chars, stop, chars.length); 
    return Integer.valueOf(new String(chars));
}
#include<stdio.h>
#include<cstring>
#include<iostream>
#include<string.h>
#include<sstream>
#include<iostream>

using namespace std;
int compare (const void * a, const void * b)
{
    return *(char*)a-*(char*)b;
}

/*-----------------------------------------------*/

int main()
{
    char number[200],temp;
    cout<<"please enter your number?"<<endl;
    gets(number);
    int n=strlen(number),length;
    length=n;
    while(--n>0)
    {
        if(number[n-1]<number[n])
        {
            for(int i=length-1;i>=n;i--)
            {
                if(number[i]>number[n-1])
                {
                    temp=number[i];
                    number[i]=number[n-1];
                    number[n-1]=temp;
                    break;
                }
            }
            qsort(number+n,length-n,sizeof(char),compare);
            puts(number); 
            return 0;
        }
    }
    cout<<"sorry itz the greatest one :)"<<endl;
}

这是另一个Java实现,可以开箱即用,并通过测试完成。 这个解决方案是O(n)个空间和时间,使用老式的动态规划。

如果你想用蛮力,有两种蛮力:

排列所有的东西,然后选择最小值更高的:O(n!) 与此实现类似,但不是DP,而是强制填充的步骤 indexToIndexOfNextSmallerLeft映射将在O(n²)中运行。


import java.util.Arrays;
import java.util.HashMap;
import java.util.Map;

import org.junit.Test;

import static org.junit.Assert.assertEquals;

public class NextHigherSameDigits {

    public long next(final long num) {
        final char[] chars = String.valueOf(num).toCharArray();
        final int[] digits = new int[chars.length];
        for (int i = 0; i < chars.length; i++) {
            digits[i] = Character.getNumericValue(chars[i]);
        }

        final Map<Integer, Integer> indexToIndexOfNextSmallerLeft = new HashMap<>();
        indexToIndexOfNextSmallerLeft.put(1, digits[1] > digits[0] ? 0 : null);
        for (int i = 2; i < digits.length; i++) {
            final int left = digits[i - 1];
            final int current = digits[i];
            Integer indexOfNextSmallerLeft = null;
            if (current > left) {
                indexOfNextSmallerLeft = i - 1;
            } else {
                final Integer indexOfnextSmallerLeftOfLeft = indexToIndexOfNextSmallerLeft.get(i - 1);
                final Integer nextSmallerLeftOfLeft = indexOfnextSmallerLeftOfLeft == null ? null : 
                    digits[indexOfnextSmallerLeftOfLeft];

                if (nextSmallerLeftOfLeft != null && current > nextSmallerLeftOfLeft) {
                    indexOfNextSmallerLeft = indexOfnextSmallerLeftOfLeft;
                } else {
                    indexOfNextSmallerLeft = null;
                }
            }

            indexToIndexOfNextSmallerLeft.put(i, indexOfNextSmallerLeft);
        }

        Integer maxOfindexOfNextSmallerLeft = null;
        Integer indexOfMinToSwapWithNextSmallerLeft = null;
        for (int i = digits.length - 1; i >= 1; i--) {
            final Integer indexOfNextSmallerLeft = indexToIndexOfNextSmallerLeft.get(i);
            if (maxOfindexOfNextSmallerLeft == null ||
                    (indexOfNextSmallerLeft != null && indexOfNextSmallerLeft > maxOfindexOfNextSmallerLeft)) {

                maxOfindexOfNextSmallerLeft = indexOfNextSmallerLeft;
                if (maxOfindexOfNextSmallerLeft != null && (indexOfMinToSwapWithNextSmallerLeft == null || 
                        digits[i] < digits[indexOfMinToSwapWithNextSmallerLeft])) {

                    indexOfMinToSwapWithNextSmallerLeft = i;
                }
            }
        }

        if (maxOfindexOfNextSmallerLeft == null) {
            return -1;
        } else {
            swap(digits, indexOfMinToSwapWithNextSmallerLeft, maxOfindexOfNextSmallerLeft);
            reverseRemainingOfArray(digits, maxOfindexOfNextSmallerLeft + 1);
            return backToLong(digits);
        }
    }

    private void reverseRemainingOfArray(final int[] digits, final int startIndex) {
        final int[] tail = Arrays.copyOfRange(digits, startIndex, digits.length);
        for (int i = tail.length - 1; i >= 0; i--) {
            digits[(digits.length - 1)  - i] = tail[i];                 
        }
    }

    private void swap(final int[] digits, final int currentIndex, final int indexOfNextSmallerLeft) {
        int temp = digits[currentIndex];
        digits[currentIndex] = digits[indexOfNextSmallerLeft];
        digits[indexOfNextSmallerLeft] = temp;
    }

    private long backToLong(int[] digits) {     
        StringBuilder sb = new StringBuilder();
        for (long i : digits) {
            sb.append(String.valueOf(i));
        }

        return Long.parseLong(sb.toString());
    }

    @Test
    public void test() {
        final long input1 =    34722641;
        final long expected1 = 34724126;
        final long output1 = new NextHigherSameDigits().next(input1);
        assertEquals(expected1, output1);

        final long input2 =    38276;
        final long expected2 = 38627;
        final long output2 = new NextHigherSameDigits().next(input2);
        assertEquals(expected2, output2);

        final long input3 =    54321;
        final long expected3 = -1;
        final long output3 = new NextHigherSameDigits().next(input3);
        assertEquals(expected3, output3);

        final long input4 =    123456784987654321L;
        final long expected4 = 123456785123446789L;
        final long output4 = new NextHigherSameDigits().next(input4);
        assertEquals(expected4, output4);

        final long input5 =    9999;
        final long expected5 = -1;
        final long output5 = new NextHigherSameDigits().next(input5);
        assertEquals(expected5, output5);
    }

}