我刚刚搞砸了一次面试,而且我的面试问题几乎毫无进展。
给定一个数,找出下一个与之完全相同的更大的数 作为原始数字的数字集。例如:给定38276返回 38627
我想从找到第一个比个位小的数字的下标开始。然后我将旋转子集中的最后一个数字,这样它是由相同的数字组成的下一个最大的数字,但卡住了。
面试官还建议我试着一次换一个数字,但我搞不懂算法,只能盯着屏幕看20-30分钟。不用说,我想我还得继续找工作。
我刚刚搞砸了一次面试,而且我的面试问题几乎毫无进展。
给定一个数,找出下一个与之完全相同的更大的数 作为原始数字的数字集。例如:给定38276返回 38627
我想从找到第一个比个位小的数字的下标开始。然后我将旋转子集中的最后一个数字,这样它是由相同的数字组成的下一个最大的数字,但卡住了。
面试官还建议我试着一次换一个数字,但我搞不懂算法,只能盯着屏幕看20-30分钟。不用说,我想我还得继续找工作。
当前回答
这是个很有趣的问题。
这是我的java版本。在我检查其他贡献者的评论之前,从弄清楚模式到完全完成代码,我花了大约3个小时。很高兴看到我的想法和别人一样。
O (n)的解决方案。老实说,如果时间只有15分钟,并且要求在白板上完成完整的代码,我将会失败。
以下是我的解决方案的一些有趣点:
避免任何排序。 完全避免字符串操作 实现O(logN)空间复杂度
我在代码中添加了详细注释,并在每个步骤中添加了大O。
public int findNextBiggestNumber(int input ) {
//take 1358642 as input for example.
//Step 1: split the whole number to a list for individual digital 1358642->[2,4,6,8,5,3,1]
// this step is O(n)
int digitalLevel=input;
List<Integer> orgNumbersList=new ArrayList<Integer>() ;
do {
Integer nInt = new Integer(digitalLevel % 10);
orgNumbersList.add(nInt);
digitalLevel=(int) (digitalLevel/10 ) ;
} while( digitalLevel >0) ;
int len= orgNumbersList.size();
int [] orgNumbers=new int[len] ;
for(int i=0;i<len;i++){
orgNumbers[i ] = orgNumbersList.get(i).intValue();
}
//step 2 find the first digital less than the digital right to it
// this step is O(n)
int firstLessPointer=1;
while(firstLessPointer<len&&(orgNumbers[firstLessPointer]>orgNumbers[ firstLessPointer-1 ])){
firstLessPointer++;
}
if(firstLessPointer==len-1&&orgNumbers[len-1]>=orgNumbers[len-2]){
//all number is in sorted order like 4321, no answer for it, return original
return input;
}
//when step 2 step finished, firstLessPointer pointing to number 5
//step 3 fristLessPointer found, need to find to first number less than it from low digital in the number
//This step is O(n)
int justBiggerPointer= 0 ;
while(justBiggerPointer<firstLessPointer&& orgNumbers[justBiggerPointer]<orgNumbers[firstLessPointer]){
justBiggerPointer++;
}
//when step 3 finished, justBiggerPointer pointing to 6
//step 4 swap the elements of justBiggerPointer and firstLessPointer .
// This is O(1) operation for swap
int tmp= orgNumbers[firstLessPointer] ;
orgNumbers[firstLessPointer]= orgNumbers[justBiggerPointer] ;
orgNumbers[justBiggerPointer]=tmp ;
// when step 4 finished, the list looks like [2,4,5,8,6,3,1] the digital in the list before
// firstLessPointer is already sorted in our previous operation
// we can return result from this list but in a differrent way
int result=0;
int i=0;
int lowPointer=firstLessPointer;
//the following pick number from list from the position just before firstLessPointer, here is 8 -> 5 -> 4 -> 2
//This Operation is O(n)
while(lowPointer>0) {
result+= orgNumbers[--lowPointer]* Math.pow(10,i);
i++;
}
//the following pick number from list from position firstLessPointer
//This Operation is O(n)
while(firstLessPointer<len) {
result+= orgNumbers[firstLessPointer++ ]* Math.pow(10,i);
i++;
}
return result;
}
下面是在Intellj中运行的结果:
959879532-->959892357
1358642-->1362458
1234567-->1234576
77654321-->77654321
38276-->38627
47-->74
其他回答
一个几乎相同的问题出现了Code Jam问题,这里有一个解决方案:
http://code.google.com/codejam/contest/dashboard?c=186264#s=a&a=1
下面用一个例子总结一下这个方法:
34722641
A.将数字序列分成两部分,使右边的部分尽可能长,同时保持递减顺序:
34722 641
(如果整个数字是递减的,就没有比这个数字更大的数字了。)
在这一点上,你知道没有从左边开始的更大的数了,因为右边的剩余数字已经尽可能大了。
责任。选择第一个序列的最后一位:
3472(2) 641
B.2。找出第二个序列中比它大的最小的数字:
3472(2) 6(4)1
你要做的就是找到左边可能的最小增量。
B.3。交换:
3472(2) 6(4)1
->
3472(4) 6(2)1
->
34724 621
C.将第二个序列按递增顺序排序:
34724 126
d .完成了!
34724126
你把这个数字分开,这样你就知道没有更大的数字具有相同的左边部分,你把左边部分增加了尽可能小的量,你让剩下的右边部分尽可能小,所以你可以确保这个新数字是用相同的数字集合可以得到的最小的更大的数字。
关于如何做到这一点,请参阅Knuth的“计算机编程艺术:生成所有排列”(.ps.gz)中的“算法L”。
import java.util.Scanner;
public class Big {
public static void main(String[] args) {
Scanner sc = new Scanner(System.in);
System.out.print("Enter the number ");
String str = sc.next();
int t=0;
char[] chars = str.toCharArray();
for(int i=str.length()-1,j=str.length()-2;j>=0;j--)
{
if((int)chars[i]>(int)chars[j])
{
t = (int)chars[i];
chars[i] = chars[j];
chars[j]=(char)t;
for(int k=j+1;k<str.length()-1;k++)
{
for(int l=k+1;l<str.length();l++)
{
if(chars[k]>chars[l])
{
int m = (int)chars[k];
chars[k] = chars[l];
chars[l]=(char)m;
}
}
}
break;
}
}
System.out.print("The next Big number is: ");
for(int i=0;i<str.length();i++){
System.out.print(chars[i]);
}
sc.close();
}
}
public static void findNext(long number){
/* convert long to string builder */
StringBuilder s = new StringBuilder();
s.append(number);
int N = s.length();
int index=-1,pivot=-1;
/* from tens position find the number (called pivot) less than the number in right */
for(int i=N-2;i>=0;i--){
int a = s.charAt(i)-'0';
int b = s.charAt(i+1)-'0';
if(a<b){
pivot = a;
index =i;
break;
}
}
/* if no such pivot then no solution */
if(pivot==-1) System.out.println(" No such number ")
else{
/* find the minimum highest number to the right higher than the pivot */
int nextHighest=Integer.MAX_VALUE, swapIndex=-1;
for(int i=index+1;i<N;i++){
int a = s.charAt(i)-'0';
if(a>pivot && a<nextHighest){
nextHighest = a;
swapIndex=i;
}
}
/* swap the pivot and next highest number */
s.replace(index,index+1,""+nextHighest);
s.replace(swapIndex,swapIndex+1,""+pivot);
/* sort everything to right of pivot and replace the sorted answer to right of pivot */
char [] sort = s.substring(index+1).toCharArray();
Arrays.sort(sort);
s.replace(index+1,N,String.copyValueOf(sort));
System.out.println("next highest number is "+s);
}
}
至少,这里有几个基于字符串的暴力解决方案的例子,你应该能够马上想到:
38276中的数字排序为23678
38627排序的数字列表是23678
蛮力增量,排序和比较
沿着蛮力解决方案将转换为字符串 然后用这些数字强行找出所有可能的数字。
从它们中创建int,把它们放在一个列表中并排序, 获取目标条目之后的下一个条目。
如果你花了30分钟在这个问题上,却没有想出一个蛮力的方法,我也不会雇用你。
在商业世界中,一个不优雅、缓慢和笨拙但能完成工作的解决方案总是比没有解决方案更有价值,事实上,这几乎描述了所有不优雅、缓慢和笨拙的商业软件。