我总是被告知永远不要用双类型或浮点类型来表示货币,这一次我向你提出一个问题:为什么?
我相信有一个很好的理由,我只是不知道是什么。
我总是被告知永远不要用双类型或浮点类型来表示货币,这一次我向你提出一个问题:为什么?
我相信有一个很好的理由,我只是不知道是什么。
当前回答
因为浮点数和双精度数不能准确地表示我们用来表示金钱的以10为底的倍数。这个问题不仅适用于Java,还适用于任何使用2进制浮点类型的编程语言。
以10为基数,可以将10.25写成1025 * 10-2(整数乘以10的幂)。IEEE-754浮点数是不同的,但是考虑它们的一个非常简单的方法是乘以2的幂。例如,您可以看到164 * 2-4(整数乘以2的幂),也等于10.25。这不是数字在内存中的表示方式,但数学含义是相同的。
即使以10为基数,这个符号也不能准确地表示大多数简单的分数。例如,你不能表示1/3:十进制表示是重复的(0.3333…),所以没有一个有限整数可以乘以10的幂得到1/3。你可以设定一个长序列的3和一个小指数,如333333333 * 10-10,但它是不准确的:如果你乘以3,你不会得到1。
然而,为了数钱,至少对于那些货币价值在美元数量级内的国家,通常你所需要的只是能够存储10-2的倍数,所以1/3不能表示并没有什么关系。
The problem with floats and doubles is that the vast majority of money-like numbers don't have an exact representation as an integer times a power of 2. In fact, the only multiples of 0.01 between 0 and 1 (which are significant when dealing with money because they're integer cents) that can be represented exactly as an IEEE-754 binary floating-point number are 0, 0.25, 0.5, 0.75 and 1. All the others are off by a small amount. As an analogy to the 0.333333 example, if you take the floating-point value for 0.01 and you multiply it by 10, you won't get 0.1. Instead you will get something like 0.099999999786...
把钱表示成双位数或浮点数一开始可能看起来不错,因为软件会消除微小的错误,但当你对不精确的数字进行更多的加减乘除运算时,错误就会加剧,最终你会得到明显不准确的数值。这使得浮点数和双精度数不适用于处理货币,因为货币需要精确计算以10为底数的倍数。
一种适用于任何语言的解决方案是使用整数,并计算美分。例如,1025就是10.25美元。一些语言也有内置的类型来处理钱。其中,Java有BigDecimal类,Rust有rust_decimal板条箱,c#有decimal类型。
其他回答
因为浮点数和双精度数不能准确地表示我们用来表示金钱的以10为底的倍数。这个问题不仅适用于Java,还适用于任何使用2进制浮点类型的编程语言。
以10为基数,可以将10.25写成1025 * 10-2(整数乘以10的幂)。IEEE-754浮点数是不同的,但是考虑它们的一个非常简单的方法是乘以2的幂。例如,您可以看到164 * 2-4(整数乘以2的幂),也等于10.25。这不是数字在内存中的表示方式,但数学含义是相同的。
即使以10为基数,这个符号也不能准确地表示大多数简单的分数。例如,你不能表示1/3:十进制表示是重复的(0.3333…),所以没有一个有限整数可以乘以10的幂得到1/3。你可以设定一个长序列的3和一个小指数,如333333333 * 10-10,但它是不准确的:如果你乘以3,你不会得到1。
然而,为了数钱,至少对于那些货币价值在美元数量级内的国家,通常你所需要的只是能够存储10-2的倍数,所以1/3不能表示并没有什么关系。
The problem with floats and doubles is that the vast majority of money-like numbers don't have an exact representation as an integer times a power of 2. In fact, the only multiples of 0.01 between 0 and 1 (which are significant when dealing with money because they're integer cents) that can be represented exactly as an IEEE-754 binary floating-point number are 0, 0.25, 0.5, 0.75 and 1. All the others are off by a small amount. As an analogy to the 0.333333 example, if you take the floating-point value for 0.01 and you multiply it by 10, you won't get 0.1. Instead you will get something like 0.099999999786...
把钱表示成双位数或浮点数一开始可能看起来不错,因为软件会消除微小的错误,但当你对不精确的数字进行更多的加减乘除运算时,错误就会加剧,最终你会得到明显不准确的数值。这使得浮点数和双精度数不适用于处理货币,因为货币需要精确计算以10为底数的倍数。
一种适用于任何语言的解决方案是使用整数,并计算美分。例如,1025就是10.25美元。一些语言也有内置的类型来处理钱。其中,Java有BigDecimal类,Rust有rust_decimal板条箱,c#有decimal类型。
这不是精确与否的问题,也不是精确与否的问题。这是一个满足以10为底而不是以2为底计算的人的期望的问题。例如,在财务计算中使用双精度值不会产生数学意义上的“错误”答案,但它可以产生财务意义上不期望的答案。
即使您在输出前的最后一分钟舍入结果,您仍然可以偶尔使用与期望不匹配的双精度结果。
Using a calculator, or calculating results by hand, 1.40 * 165 = 231 exactly. However, internally using doubles, on my compiler / operating system environment, it is stored as a binary number close to 230.99999... so if you truncate the number, you get 230 instead of 231. You may reason that rounding instead of truncating would have given the desired result of 231. That is true, but rounding always involves truncation. Whatever rounding technique you use, there are still boundary conditions like this one that will round down when you expect it to round up. They are rare enough that they often will not be found through casual testing or observation. You may have to write some code to search for examples that illustrate outcomes that do not behave as expected.
Assume you want to round something to the nearest penny. So you take your final result, multiply by 100, add 0.5, truncate, then divide the result by 100 to get back to pennies. If the internal number you stored was 3.46499999.... instead of 3.465, you are going to get 3.46 instead 3.47 when you round the number to the nearest penny. But your base 10 calculations may have indicated that the answer should be 3.465 exactly, which clearly should round up to 3.47, not down to 3.46. These kinds of things happen occasionally in real life when you use doubles for financial calculations. It is rare, so it often goes unnoticed as an issue, but it happens.
如果您使用以10为基数进行内部计算,而不是使用双数,则如果您的代码中没有其他错误,那么结果总是完全符合人类的预期。
虽然浮点类型确实只能表示近似的十进制数据,但如果在表示数字之前将数字舍入到必要的精度,则可以获得正确的结果。通常。
通常是因为双排精度小于16位。如果你要求更高的精度,这不是一个合适的类型。近似也可以累积。
必须指出的是,即使您使用定点算术,您仍然必须对数字进行四舍五入,如果不是因为BigInteger和BigDecimal在获得周期性小数时会给出错误。所以这里也有一个近似。
例如,历史上用于财务计算的COBOL的最大精度为18位数字。所以通常会有一个隐含的舍入。
总之,在我看来,双精度主要不适合它的16位精度,这可能是不够的,而不是因为它是近似值。
考虑以下后续程序的输出。它表明,在舍入double后,得到与BigDecimal相同的结果,精度为16。
Precision 14
------------------------------------------------------
BigDecimalNoRound : 56789.012345 / 1111111111 = Non-terminating decimal expansion; no exact representable decimal result.
DoubleNoRound : 56789.012345 / 1111111111 = 5.111011111561101E-5
BigDecimal : 56789.012345 / 1111111111 = 0.000051110111115611
Double : 56789.012345 / 1111111111 = 0.000051110111115611
Precision 15
------------------------------------------------------
BigDecimalNoRound : 56789.012345 / 1111111111 = Non-terminating decimal expansion; no exact representable decimal result.
DoubleNoRound : 56789.012345 / 1111111111 = 5.111011111561101E-5
BigDecimal : 56789.012345 / 1111111111 = 0.0000511101111156110
Double : 56789.012345 / 1111111111 = 0.0000511101111156110
Precision 16
------------------------------------------------------
BigDecimalNoRound : 56789.012345 / 1111111111 = Non-terminating decimal expansion; no exact representable decimal result.
DoubleNoRound : 56789.012345 / 1111111111 = 5.111011111561101E-5
BigDecimal : 56789.012345 / 1111111111 = 0.00005111011111561101
Double : 56789.012345 / 1111111111 = 0.00005111011111561101
Precision 17
------------------------------------------------------
BigDecimalNoRound : 56789.012345 / 1111111111 = Non-terminating decimal expansion; no exact representable decimal result.
DoubleNoRound : 56789.012345 / 1111111111 = 5.111011111561101E-5
BigDecimal : 56789.012345 / 1111111111 = 0.000051110111115611011
Double : 56789.012345 / 1111111111 = 0.000051110111115611013
Precision 18
------------------------------------------------------
BigDecimalNoRound : 56789.012345 / 1111111111 = Non-terminating decimal expansion; no exact representable decimal result.
DoubleNoRound : 56789.012345 / 1111111111 = 5.111011111561101E-5
BigDecimal : 56789.012345 / 1111111111 = 0.0000511101111156110111
Double : 56789.012345 / 1111111111 = 0.0000511101111156110125
Precision 19
------------------------------------------------------
BigDecimalNoRound : 56789.012345 / 1111111111 = Non-terminating decimal expansion; no exact representable decimal result.
DoubleNoRound : 56789.012345 / 1111111111 = 5.111011111561101E-5
BigDecimal : 56789.012345 / 1111111111 = 0.00005111011111561101111
Double : 56789.012345 / 1111111111 = 0.00005111011111561101252
import java.lang.reflect.InvocationTargetException;
import java.lang.reflect.Method;
import java.math.BigDecimal;
import java.math.MathContext;
public class Exercise {
public static void main(String[] args) throws IllegalArgumentException,
SecurityException, IllegalAccessException,
InvocationTargetException, NoSuchMethodException {
String amount = "56789.012345";
String quantity = "1111111111";
int [] precisions = new int [] {14, 15, 16, 17, 18, 19};
for (int i = 0; i < precisions.length; i++) {
int precision = precisions[i];
System.out.println(String.format("Precision %d", precision));
System.out.println("------------------------------------------------------");
execute("BigDecimalNoRound", amount, quantity, precision);
execute("DoubleNoRound", amount, quantity, precision);
execute("BigDecimal", amount, quantity, precision);
execute("Double", amount, quantity, precision);
System.out.println();
}
}
private static void execute(String test, String amount, String quantity,
int precision) throws IllegalArgumentException, SecurityException,
IllegalAccessException, InvocationTargetException,
NoSuchMethodException {
Method impl = Exercise.class.getMethod("divideUsing" + test, String.class,
String.class, int.class);
String price;
try {
price = (String) impl.invoke(null, amount, quantity, precision);
} catch (InvocationTargetException e) {
price = e.getTargetException().getMessage();
}
System.out.println(String.format("%-30s: %s / %s = %s", test, amount,
quantity, price));
}
public static String divideUsingDoubleNoRound(String amount,
String quantity, int precision) {
// acceptance
double amount0 = Double.parseDouble(amount);
double quantity0 = Double.parseDouble(quantity);
//calculation
double price0 = amount0 / quantity0;
// presentation
String price = Double.toString(price0);
return price;
}
public static String divideUsingDouble(String amount, String quantity,
int precision) {
// acceptance
double amount0 = Double.parseDouble(amount);
double quantity0 = Double.parseDouble(quantity);
//calculation
double price0 = amount0 / quantity0;
// presentation
MathContext precision0 = new MathContext(precision);
String price = new BigDecimal(price0, precision0)
.toString();
return price;
}
public static String divideUsingBigDecimal(String amount, String quantity,
int precision) {
// acceptance
BigDecimal amount0 = new BigDecimal(amount);
BigDecimal quantity0 = new BigDecimal(quantity);
MathContext precision0 = new MathContext(precision);
//calculation
BigDecimal price0 = amount0.divide(quantity0, precision0);
// presentation
String price = price0.toString();
return price;
}
public static String divideUsingBigDecimalNoRound(String amount, String quantity,
int precision) {
// acceptance
BigDecimal amount0 = new BigDecimal(amount);
BigDecimal quantity0 = new BigDecimal(quantity);
//calculation
BigDecimal price0 = amount0.divide(quantity0);
// presentation
String price = price0.toString();
return price;
}
}
浮点数和双精度数是近似的。如果你创建了一个BigDecimal并将一个float传递给构造函数,你会看到float实际等于什么:
groovy:000> new BigDecimal(1.0F)
===> 1
groovy:000> new BigDecimal(1.01F)
===> 1.0099999904632568359375
这可能不是您想要的表示1.01美元的方式。
问题是IEEE规范没有一种方法来精确地表示所有的分数,其中一些分数最终是重复的分数,所以你最终会得到近似错误。由于会计人员喜欢精确到每一分钱,如果客户支付账单,在付款处理后他们欠0.01,他们会被收取费用或无法关闭他们的帐户,那么最好使用精确的类型,如decimal(在c#中)或Java. math. bigdecimal。
这并不是说如果你四舍五入,误差就无法控制:请参阅Peter Lawrey的这篇文章。只是从一开始就不用四舍五入更容易。大多数处理资金的应用程序不需要大量的数学运算,操作包括添加东西或将金额分配到不同的存储空间。引入浮点数和舍入只会使事情复杂化。
大多数回答都强调了为什么不应该使用替身来计算金钱和货币。我完全同意他们的观点。
但这并不是说,double永远不能用于这个目的。
我曾经参与过许多gc需求非常低的项目,BigDecimal对象是造成这种开销的一个重要因素。
正是由于缺乏对双重表示的理解,以及缺乏处理准确性和精确性的经验,才产生了这个明智的建议。
如果您能够处理项目的精度和准确性要求,则可以使其工作,这必须基于处理的双精度值的范围来完成。
你可以参考番石榴的FuzzyCompare方法来获得更多的信息。参数公差是关键。 我们为一个证券交易应用程序处理了这个问题,并对在不同范围内对不同数值使用什么公差做了详尽的研究。
此外,在某些情况下,您可能会试图使用Double包装器作为映射键,并将哈希映射作为实现。这是非常危险的,因为双重。等号和哈希码,例如值“0.5”和“0.6 - 0.1”将导致一个大混乱。