我总是被告知永远不要用双类型或浮点类型来表示货币,这一次我向你提出一个问题:为什么?

我相信有一个很好的理由,我只是不知道是什么。


当前回答

虽然浮点类型确实只能表示近似的十进制数据,但如果在表示数字之前将数字舍入到必要的精度,则可以获得正确的结果。通常。

通常是因为双排精度小于16位。如果你要求更高的精度,这不是一个合适的类型。近似也可以累积。

必须指出的是,即使您使用定点算术,您仍然必须对数字进行四舍五入,如果不是因为BigInteger和BigDecimal在获得周期性小数时会给出错误。所以这里也有一个近似。

例如,历史上用于财务计算的COBOL的最大精度为18位数字。所以通常会有一个隐含的舍入。

总之,在我看来,双精度主要不适合它的16位精度,这可能是不够的,而不是因为它是近似值。

考虑以下后续程序的输出。它表明,在舍入double后,得到与BigDecimal相同的结果,精度为16。

Precision 14
------------------------------------------------------
BigDecimalNoRound             : 56789.012345 / 1111111111 = Non-terminating decimal expansion; no exact representable decimal result.
DoubleNoRound                 : 56789.012345 / 1111111111 = 5.111011111561101E-5
BigDecimal                    : 56789.012345 / 1111111111 = 0.000051110111115611
Double                        : 56789.012345 / 1111111111 = 0.000051110111115611

Precision 15
------------------------------------------------------
BigDecimalNoRound             : 56789.012345 / 1111111111 = Non-terminating decimal expansion; no exact representable decimal result.
DoubleNoRound                 : 56789.012345 / 1111111111 = 5.111011111561101E-5
BigDecimal                    : 56789.012345 / 1111111111 = 0.0000511101111156110
Double                        : 56789.012345 / 1111111111 = 0.0000511101111156110

Precision 16
------------------------------------------------------
BigDecimalNoRound             : 56789.012345 / 1111111111 = Non-terminating decimal expansion; no exact representable decimal result.
DoubleNoRound                 : 56789.012345 / 1111111111 = 5.111011111561101E-5
BigDecimal                    : 56789.012345 / 1111111111 = 0.00005111011111561101
Double                        : 56789.012345 / 1111111111 = 0.00005111011111561101

Precision 17
------------------------------------------------------
BigDecimalNoRound             : 56789.012345 / 1111111111 = Non-terminating decimal expansion; no exact representable decimal result.
DoubleNoRound                 : 56789.012345 / 1111111111 = 5.111011111561101E-5
BigDecimal                    : 56789.012345 / 1111111111 = 0.000051110111115611011
Double                        : 56789.012345 / 1111111111 = 0.000051110111115611013

Precision 18
------------------------------------------------------
BigDecimalNoRound             : 56789.012345 / 1111111111 = Non-terminating decimal expansion; no exact representable decimal result.
DoubleNoRound                 : 56789.012345 / 1111111111 = 5.111011111561101E-5
BigDecimal                    : 56789.012345 / 1111111111 = 0.0000511101111156110111
Double                        : 56789.012345 / 1111111111 = 0.0000511101111156110125

Precision 19
------------------------------------------------------
BigDecimalNoRound             : 56789.012345 / 1111111111 = Non-terminating decimal expansion; no exact representable decimal result.
DoubleNoRound                 : 56789.012345 / 1111111111 = 5.111011111561101E-5
BigDecimal                    : 56789.012345 / 1111111111 = 0.00005111011111561101111
Double                        : 56789.012345 / 1111111111 = 0.00005111011111561101252

import java.lang.reflect.InvocationTargetException;
import java.lang.reflect.Method;
import java.math.BigDecimal;
import java.math.MathContext;

public class Exercise {
    public static void main(String[] args) throws IllegalArgumentException,
            SecurityException, IllegalAccessException,
            InvocationTargetException, NoSuchMethodException {
        String amount = "56789.012345";
        String quantity = "1111111111";
        int [] precisions = new int [] {14, 15, 16, 17, 18, 19};
        for (int i = 0; i < precisions.length; i++) {
            int precision = precisions[i];
            System.out.println(String.format("Precision %d", precision));
            System.out.println("------------------------------------------------------");
            execute("BigDecimalNoRound", amount, quantity, precision);
            execute("DoubleNoRound", amount, quantity, precision);
            execute("BigDecimal", amount, quantity, precision);
            execute("Double", amount, quantity, precision);
            System.out.println();
        }
    }

    private static void execute(String test, String amount, String quantity,
            int precision) throws IllegalArgumentException, SecurityException,
            IllegalAccessException, InvocationTargetException,
            NoSuchMethodException {
        Method impl = Exercise.class.getMethod("divideUsing" + test, String.class,
                String.class, int.class);
        String price;
        try {
            price = (String) impl.invoke(null, amount, quantity, precision);
        } catch (InvocationTargetException e) {
            price = e.getTargetException().getMessage();
        }
        System.out.println(String.format("%-30s: %s / %s = %s", test, amount,
                quantity, price));
    }

    public static String divideUsingDoubleNoRound(String amount,
            String quantity, int precision) {
        // acceptance
        double amount0 = Double.parseDouble(amount);
        double quantity0 = Double.parseDouble(quantity);

        //calculation
        double price0 = amount0 / quantity0;

        // presentation
        String price = Double.toString(price0);
        return price;
    }

    public static String divideUsingDouble(String amount, String quantity,
            int precision) {
        // acceptance
        double amount0 = Double.parseDouble(amount);
        double quantity0 = Double.parseDouble(quantity);

        //calculation
        double price0 = amount0 / quantity0;

        // presentation
        MathContext precision0 = new MathContext(precision);
        String price = new BigDecimal(price0, precision0)
                .toString();
        return price;
    }

    public static String divideUsingBigDecimal(String amount, String quantity,
            int precision) {
        // acceptance
        BigDecimal amount0 = new BigDecimal(amount);
        BigDecimal quantity0 = new BigDecimal(quantity);
        MathContext precision0 = new MathContext(precision);

        //calculation
        BigDecimal price0 = amount0.divide(quantity0, precision0);

        // presentation
        String price = price0.toString();
        return price;
    }

    public static String divideUsingBigDecimalNoRound(String amount, String quantity,
            int precision) {
        // acceptance
        BigDecimal amount0 = new BigDecimal(amount);
        BigDecimal quantity0 = new BigDecimal(quantity);

        //calculation
        BigDecimal price0 = amount0.divide(quantity0);

        // presentation
        String price = price0.toString();
        return price;
    }
}

其他回答

因为浮点数和双精度数不能准确地表示我们用来表示金钱的以10为底的倍数。这个问题不仅适用于Java,还适用于任何使用2进制浮点类型的编程语言。

以10为基数,可以将10.25写成1025 * 10-2(整数乘以10的幂)。IEEE-754浮点数是不同的,但是考虑它们的一个非常简单的方法是乘以2的幂。例如,您可以看到164 * 2-4(整数乘以2的幂),也等于10.25。这不是数字在内存中的表示方式,但数学含义是相同的。

即使以10为基数,这个符号也不能准确地表示大多数简单的分数。例如,你不能表示1/3:十进制表示是重复的(0.3333…),所以没有一个有限整数可以乘以10的幂得到1/3。你可以设定一个长序列的3和一个小指数,如333333333 * 10-10,但它是不准确的:如果你乘以3,你不会得到1。

然而,为了数钱,至少对于那些货币价值在美元数量级内的国家,通常你所需要的只是能够存储10-2的倍数,所以1/3不能表示并没有什么关系。

The problem with floats and doubles is that the vast majority of money-like numbers don't have an exact representation as an integer times a power of 2. In fact, the only multiples of 0.01 between 0 and 1 (which are significant when dealing with money because they're integer cents) that can be represented exactly as an IEEE-754 binary floating-point number are 0, 0.25, 0.5, 0.75 and 1. All the others are off by a small amount. As an analogy to the 0.333333 example, if you take the floating-point value for 0.01 and you multiply it by 10, you won't get 0.1. Instead you will get something like 0.099999999786...

把钱表示成双位数或浮点数一开始可能看起来不错,因为软件会消除微小的错误,但当你对不精确的数字进行更多的加减乘除运算时,错误就会加剧,最终你会得到明显不准确的数值。这使得浮点数和双精度数不适用于处理货币,因为货币需要精确计算以10为底数的倍数。

一种适用于任何语言的解决方案是使用整数,并计算美分。例如,1025就是10.25美元。一些语言也有内置的类型来处理钱。其中,Java有BigDecimal类,Rust有rust_decimal板条箱,c#有decimal类型。

这不是精确与否的问题,也不是精确与否的问题。这是一个满足以10为底而不是以2为底计算的人的期望的问题。例如,在财务计算中使用双精度值不会产生数学意义上的“错误”答案,但它可以产生财务意义上不期望的答案。

即使您在输出前的最后一分钟舍入结果,您仍然可以偶尔使用与期望不匹配的双精度结果。

Using a calculator, or calculating results by hand, 1.40 * 165 = 231 exactly. However, internally using doubles, on my compiler / operating system environment, it is stored as a binary number close to 230.99999... so if you truncate the number, you get 230 instead of 231. You may reason that rounding instead of truncating would have given the desired result of 231. That is true, but rounding always involves truncation. Whatever rounding technique you use, there are still boundary conditions like this one that will round down when you expect it to round up. They are rare enough that they often will not be found through casual testing or observation. You may have to write some code to search for examples that illustrate outcomes that do not behave as expected.

Assume you want to round something to the nearest penny. So you take your final result, multiply by 100, add 0.5, truncate, then divide the result by 100 to get back to pennies. If the internal number you stored was 3.46499999.... instead of 3.465, you are going to get 3.46 instead 3.47 when you round the number to the nearest penny. But your base 10 calculations may have indicated that the answer should be 3.465 exactly, which clearly should round up to 3.47, not down to 3.46. These kinds of things happen occasionally in real life when you use doubles for financial calculations. It is rare, so it often goes unnoticed as an issue, but it happens.

如果您使用以10为基数进行内部计算,而不是使用双数,则如果您的代码中没有其他错误,那么结果总是完全符合人类的预期。

为了补充前面的答案,在处理问题中解决的问题时,除了BigDecimal之外,还可以选择在Java中实现Joda-Money。Java模块名称为org.joda.money。

它需要Java SE 8或更高版本,并且没有依赖关系。

更准确地说,存在编译时依赖关系,但它不是 必需的。

<dependency>
  <groupId>org.joda</groupId>
  <artifactId>joda-money</artifactId>
  <version>1.0.1</version>
</dependency>

使用Joda Money的例子:

  // create a monetary value
  Money money = Money.parse("USD 23.87");
  
  // add another amount with safe double conversion
  CurrencyUnit usd = CurrencyUnit.of("USD");
  money = money.plus(Money.of(usd, 12.43d));
  
  // subtracts an amount in dollars
  money = money.minusMajor(2);
  
  // multiplies by 3.5 with rounding
  money = money.multipliedBy(3.5d, RoundingMode.DOWN);
  
  // compare two amounts
  boolean bigAmount = money.isGreaterThan(dailyWage);
  
  // convert to GBP using a supplied rate
  BigDecimal conversionRate = ...;  // obtained from code outside Joda-Money
  Money moneyGBP = money.convertedTo(CurrencyUnit.GBP, conversionRate, RoundingMode.HALF_UP);
  
  // use a BigMoney for more complex calculations where scale matters
  BigMoney moneyCalc = money.toBigMoney();

文档: http://joda-money.sourceforge.net/apidocs/org/joda/money/Money.html 实现示例: https://www.programcreek.com/java-api-examples/?api=org.joda.money.Money

浮点数和双精度数是近似的。如果你创建了一个BigDecimal并将一个float传递给构造函数,你会看到float实际等于什么:

groovy:000> new BigDecimal(1.0F)
===> 1
groovy:000> new BigDecimal(1.01F)
===> 1.0099999904632568359375

这可能不是您想要的表示1.01美元的方式。

问题是IEEE规范没有一种方法来精确地表示所有的分数,其中一些分数最终是重复的分数,所以你最终会得到近似错误。由于会计人员喜欢精确到每一分钱,如果客户支付账单,在付款处理后他们欠0.01,他们会被收取费用或无法关闭他们的帐户,那么最好使用精确的类型,如decimal(在c#中)或Java. math. bigdecimal。

这并不是说如果你四舍五入,误差就无法控制:请参阅Peter Lawrey的这篇文章。只是从一开始就不用四舍五入更容易。大多数处理资金的应用程序不需要大量的数学运算,操作包括添加东西或将金额分配到不同的存储空间。引入浮点数和舍入只会使事情复杂化。

这个问题的许多答案都讨论了IEEE和围绕浮点算法的标准。

我的背景不是计算机科学(物理和工程),我倾向于从不同的角度看问题。对我来说,我在数学计算中不使用double或float的原因是我会丢失太多的信息。

有什么替代方案?有很多(还有很多我不知道的!)

Java中的BigDecimal原产于Java语言。 Apfloat是另一个用于Java的任意精度库。

c#中的十进制数据类型是微软的. net中28位有效数字的替代方案。

SciPy (Scientific Python)可能还可以处理财务计算(我还没有尝试过,但我怀疑是这样)。

GNU多精度库(GMP)和GNU MFPR库是C和c++的两个免费的开源资源。

还有用于JavaScript(!)和PHP的精确数值库,我认为它们可以处理财务计算。

对于许多计算机语言,也有专有的(特别是Fortran)和开源的解决方案。

我不是训练出来的计算机科学家。然而,我倾向于在Java中使用BigDecimal,在c#中使用decimal。我还没有尝试过我列出的其他解决方案,但它们可能也非常好。

对我来说,我喜欢BigDecimal是因为它支持的方法。c#的十进制非常好,但我还没有机会尽可能多地使用它。我在业余时间做我感兴趣的科学计算,BigDecimal似乎工作得很好,因为我可以设置浮点数的精度。BigDecimal的缺点是什么?它有时会很慢,特别是当你使用除法的时候。

为了提高速度,您可以查看C、c++和Fortran中的免费和专有库。