我总是被告知永远不要用双类型或浮点类型来表示货币,这一次我向你提出一个问题:为什么?
我相信有一个很好的理由,我只是不知道是什么。
我总是被告知永远不要用双类型或浮点类型来表示货币,这一次我向你提出一个问题:为什么?
我相信有一个很好的理由,我只是不知道是什么。
当前回答
The result of floating point number is not exact, which makes them unsuitable for any financial calculation which requires exact result and not approximation. float and double are designed for engineering and scientific calculation and many times doesn’t produce exact result also result of floating point calculation may vary from JVM to JVM. Look at below example of BigDecimal and double primitive which is used to represent money value, its quite clear that floating point calculation may not be exact and one should use BigDecimal for financial calculations.
// floating point calculation
final double amount1 = 2.0;
final double amount2 = 1.1;
System.out.println("difference between 2.0 and 1.1 using double is: " + (amount1 - amount2));
// Use BigDecimal for financial calculation
final BigDecimal amount3 = new BigDecimal("2.0");
final BigDecimal amount4 = new BigDecimal("1.1");
System.out.println("difference between 2.0 and 1.1 using BigDecimal is: " + (amount3.subtract(amount4)));
输出:
difference between 2.0 and 1.1 using double is: 0.8999999999999999
difference between 2.0 and 1.1 using BigDecimal is: 0.9
其他回答
我对其中一些回答感到困扰。我认为双数和浮点数在财务计算中占有一席之地。当然,在使用整数类或BigDecimal类时,在加减非分数货币金额时,不会损失精度。但是,当执行更复杂的操作时,无论您如何存储这些数字,您经常会得到小数点后几位或许多位的结果。问题在于你如何呈现结果。
如果你的结果是在四舍五入和四舍五入之间的边缘,最后一分真的很重要,你可能应该告诉观众答案几乎在中间——通过显示更多的小数点后数位。
双精度浮点数的问题是,当它们被用来组合大数和小数时。在java中,
System.out.println(1000000.0f + 1.2f - 1000000.0f);
结果
1.1875
如果你的计算涉及到不同的步骤,任意的精度算法都不能100%覆盖你。
使用完美的结果表示(使用自定义Fraction数据类型,将除法操作批处理到最后一步)并且仅在最后一步转换为十进制的唯一可靠方法。
任意精度不会有帮助,因为总有可能有很多小数点后的数字,或者一些结果,如0.6666666……最后一个例子没有任意的表示法。所以每一步都会有小误差。
这些错误会累积起来,最终可能变得不再容易被忽视。这被称为错误传播。
摘自Bloch, J., Effective Java,(第二版,第48项。第3版,项目60):
float和double类型是 尤其不适用于货币 因为这是不可能的 表示0.1(或任何其他。 10的负次方)作为浮点数或 完全的两倍。 例如,假设您有1.03美元 你花了42c。多少钱? 你走了? System.out.println(1.03 - .42); 输出0.6100000000000001。 解决这个问题的正确方法是 使用BigDecimal, int或long 用于货币计算。
虽然BigDecimal有一些警告(请参阅当前接受的答案)。
我将冒着被否决的风险,但我认为浮点数在货币计算中的不适用性被高估了。只要确保正确地进行了舍入,并且有足够的有效数字来处理zneak解释的二进制十进制表示不匹配,就不会有问题。
在Excel中使用货币计算的人总是使用双精度浮点数(Excel中没有货币类型),我还没有看到有人抱怨舍入错误。
当然,你必须在合理范围内;例如,一个简单的网络商店可能永远不会遇到双精度浮点数的任何问题,但如果你做会计或其他需要添加大量(无限制)数字的事情,你不会想要用十英尺的杆子触摸浮点数。
美国货币可以很容易地用美元和美分来表示。整数是100%精确的,而浮点二进制数并不完全匹配浮点小数。