我总是被告知永远不要用双类型或浮点类型来表示货币,这一次我向你提出一个问题:为什么?

我相信有一个很好的理由,我只是不知道是什么。


当前回答

如前所述,“把钱表示为双位数或浮点数,一开始可能看起来不错,因为软件会消除微小的错误,但当你对不精确的数字进行更多的加减乘除时,随着错误的增加,你会失去越来越多的精度。”这使得浮点数和双精度数不适用于处理货币,因为货币需要精确计算以10为底数的倍数。”

最后,Java有一个标准的方法来处理货币和金钱!

JSR 354:货币和货币API

JSR 354提供了一个API,用于表示、传输和执行Money和Currency的综合计算。你可以从以下连结下载:

JSR 354:货币和货币API下载

该规范包括以下内容:

用于处理例如货币数量和货币的API 支持可互换实现的api 用于创建实现类实例的工厂 用于计算、转换和格式化货币金额的功能 用于处理Money和Currencies的Java API,计划包含在Java 9中。 所有规范类和接口都位于javax.money中。*包。

JSR 354: Money and Currency API示例:

创建一个moneyaryamount并将其打印到控制台的示例如下:

MonetaryAmountFactory<?> amountFactory = Monetary.getDefaultAmountFactory();
MonetaryAmount monetaryAmount = amountFactory.setCurrency(Monetary.getCurrency("EUR")).setNumber(12345.67).create();
MonetaryAmountFormat format = MonetaryFormats.getAmountFormat(Locale.getDefault());
System.out.println(format.format(monetaryAmount));

当使用参考实现API时,必要的代码要简单得多:

MonetaryAmount monetaryAmount = Money.of(12345.67, "EUR");
MonetaryAmountFormat format = MonetaryFormats.getAmountFormat(Locale.getDefault());
System.out.println(format.format(monetaryAmount));

该API还支持monetaryamount的计算:

MonetaryAmount monetaryAmount = Money.of(12345.67, "EUR");
MonetaryAmount otherMonetaryAmount = monetaryAmount.divide(2).add(Money.of(5, "EUR"));

CurrencyUnit和moneyaryamount

// getting CurrencyUnits by locale
CurrencyUnit yen = MonetaryCurrencies.getCurrency(Locale.JAPAN);
CurrencyUnit canadianDollar = MonetaryCurrencies.getCurrency(Locale.CANADA);

moneyaryamount有各种方法,允许访问指定的货币,数字金额,其精度和更多:

MonetaryAmount monetaryAmount = Money.of(123.45, euro);
CurrencyUnit currency = monetaryAmount.getCurrency();
NumberValue numberValue = monetaryAmount.getNumber();

int intValue = numberValue.intValue(); // 123
double doubleValue = numberValue.doubleValue(); // 123.45
long fractionDenominator = numberValue.getAmountFractionDenominator(); // 100
long fractionNumerator = numberValue.getAmountFractionNumerator(); // 45
int precision = numberValue.getPrecision(); // 5

// NumberValue extends java.lang.Number.
// So we assign numberValue to a variable of type Number
Number number = numberValue;

monearyamount可以使用舍入运算符进行舍入:

CurrencyUnit usd = MonetaryCurrencies.getCurrency("USD");
MonetaryAmount dollars = Money.of(12.34567, usd);
MonetaryOperator roundingOperator = MonetaryRoundings.getRounding(usd);
MonetaryAmount roundedDollars = dollars.with(roundingOperator); // USD 12.35

当使用monearyamount的集合时,可以使用一些不错的实用程序方法进行过滤、排序和分组。

List<MonetaryAmount> amounts = new ArrayList<>();
amounts.add(Money.of(2, "EUR"));
amounts.add(Money.of(42, "USD"));
amounts.add(Money.of(7, "USD"));
amounts.add(Money.of(13.37, "JPY"));
amounts.add(Money.of(18, "USD"));

自定义monearyamount操作

// A monetary operator that returns 10% of the input MonetaryAmount
// Implemented using Java 8 Lambdas
MonetaryOperator tenPercentOperator = (MonetaryAmount amount) -> {
    BigDecimal baseAmount = amount.getNumber().numberValue(BigDecimal.class);
    BigDecimal tenPercent = baseAmount.multiply(new BigDecimal("0.1"));
    return Money.of(tenPercent, amount.getCurrency());
};

MonetaryAmount dollars = Money.of(12.34567, "USD");

// apply tenPercentOperator to MonetaryAmount
MonetaryAmount tenPercentDollars = dollars.with(tenPercentOperator); // USD 1.234567

资源:

使用JSR 354在Java中处理金钱和货币

Java 9货币和货币API (JSR 354)

参见:JSR 354 -货币和货币

其他回答

浮点数和双精度数是近似的。如果你创建了一个BigDecimal并将一个float传递给构造函数,你会看到float实际等于什么:

groovy:000> new BigDecimal(1.0F)
===> 1
groovy:000> new BigDecimal(1.01F)
===> 1.0099999904632568359375

这可能不是您想要的表示1.01美元的方式。

问题是IEEE规范没有一种方法来精确地表示所有的分数,其中一些分数最终是重复的分数,所以你最终会得到近似错误。由于会计人员喜欢精确到每一分钱,如果客户支付账单,在付款处理后他们欠0.01,他们会被收取费用或无法关闭他们的帐户,那么最好使用精确的类型,如decimal(在c#中)或Java. math. bigdecimal。

这并不是说如果你四舍五入,误差就无法控制:请参阅Peter Lawrey的这篇文章。只是从一开始就不用四舍五入更容易。大多数处理资金的应用程序不需要大量的数学运算,操作包括添加东西或将金额分配到不同的存储空间。引入浮点数和舍入只会使事情复杂化。

美国货币可以很容易地用美元和美分来表示。整数是100%精确的,而浮点二进制数并不完全匹配浮点小数。

这个问题的许多答案都讨论了IEEE和围绕浮点算法的标准。

我的背景不是计算机科学(物理和工程),我倾向于从不同的角度看问题。对我来说,我在数学计算中不使用double或float的原因是我会丢失太多的信息。

有什么替代方案?有很多(还有很多我不知道的!)

Java中的BigDecimal原产于Java语言。 Apfloat是另一个用于Java的任意精度库。

c#中的十进制数据类型是微软的. net中28位有效数字的替代方案。

SciPy (Scientific Python)可能还可以处理财务计算(我还没有尝试过,但我怀疑是这样)。

GNU多精度库(GMP)和GNU MFPR库是C和c++的两个免费的开源资源。

还有用于JavaScript(!)和PHP的精确数值库,我认为它们可以处理财务计算。

对于许多计算机语言,也有专有的(特别是Fortran)和开源的解决方案。

我不是训练出来的计算机科学家。然而,我倾向于在Java中使用BigDecimal,在c#中使用decimal。我还没有尝试过我列出的其他解决方案,但它们可能也非常好。

对我来说,我喜欢BigDecimal是因为它支持的方法。c#的十进制非常好,但我还没有机会尽可能多地使用它。我在业余时间做我感兴趣的科学计算,BigDecimal似乎工作得很好,因为我可以设置浮点数的精度。BigDecimal的缺点是什么?它有时会很慢,特别是当你使用除法的时候。

为了提高速度,您可以查看C、c++和Fortran中的免费和专有库。

The result of floating point number is not exact, which makes them unsuitable for any financial calculation which requires exact result and not approximation. float and double are designed for engineering and scientific calculation and many times doesn’t produce exact result also result of floating point calculation may vary from JVM to JVM. Look at below example of BigDecimal and double primitive which is used to represent money value, its quite clear that floating point calculation may not be exact and one should use BigDecimal for financial calculations.

    // floating point calculation
    final double amount1 = 2.0;
    final double amount2 = 1.1;
    System.out.println("difference between 2.0 and 1.1 using double is: " + (amount1 - amount2));

    // Use BigDecimal for financial calculation
    final BigDecimal amount3 = new BigDecimal("2.0");
    final BigDecimal amount4 = new BigDecimal("1.1");
    System.out.println("difference between 2.0 and 1.1 using BigDecimal is: " + (amount3.subtract(amount4)));

输出:

difference between 2.0 and 1.1 using double is: 0.8999999999999999
difference between 2.0 and 1.1 using BigDecimal is: 0.9

如果你的计算涉及到不同的步骤,任意的精度算法都不能100%覆盖你。

使用完美的结果表示(使用自定义Fraction数据类型,将除法操作批处理到最后一步)并且仅在最后一步转换为十进制的唯一可靠方法。

任意精度不会有帮助,因为总有可能有很多小数点后的数字,或者一些结果,如0.6666666……最后一个例子没有任意的表示法。所以每一步都会有小误差。

这些错误会累积起来,最终可能变得不再容易被忽视。这被称为错误传播。