如何根据Pandas中某列的值从DataFrame中选择行?
在SQL中,我会使用:
SELECT *
FROM table
WHERE column_name = some_value
如何根据Pandas中某列的值从DataFrame中选择行?
在SQL中,我会使用:
SELECT *
FROM table
WHERE column_name = some_value
当前回答
如果您想重复查询数据帧,并且速度对您很重要,最好的方法是将数据帧转换为字典,然后通过这样做,您可以将查询速度提高数千倍。
my_df = df.set_index(column_name)
my_dict = my_df.to_dict('index')
制作my_dict字典后,您可以浏览:
if some_value in my_dict.keys():
my_result = my_dict[some_value]
如果column_name中有重复值,则无法创建字典。但您可以使用:
my_result = my_df.loc[some_value]
其他回答
有几种方法可以从Pandas数据帧中选择行:
布尔索引(df[df['col']==value])位置索引(df.iloc[…])标签索引(df.xs(…))df.query(…)API
下面我向您展示了每种方法的示例,并给出了何时使用某些技术的建议。假设我们的标准是列“A”==“foo”
(性能注意:对于每种基本类型,我们可以使用Pandas API保持简单,或者我们可以在API之外冒险,通常使用NumPy,并加快速度。)
安装程序
我们需要做的第一件事是确定一个条件,它将作为我们选择行的标准。我们将从OP的case column_name=some_value开始,并包括一些其他常见用例。
从@unsubu借款:
import pandas as pd, numpy as np
df = pd.DataFrame({'A': 'foo bar foo bar foo bar foo foo'.split(),
'B': 'one one two three two two one three'.split(),
'C': np.arange(8), 'D': np.arange(8) * 2})
1.布尔索引
…布尔索引需要找到每一行的“A”列的真值等于“foo”,然后使用这些真值来确定要保留的行。通常,我们将这个系列命名为真值数组mask。我们也会在这里这样做。
mask = df['A'] == 'foo'
然后,我们可以使用此掩码对数据帧进行切片或索引
df[mask]
A B C D
0 foo one 0 0
2 foo two 2 4
4 foo two 4 8
6 foo one 6 12
7 foo three 7 14
这是完成这项任务的最简单方法之一,如果性能或直觉不是问题,这应该是您选择的方法。但是,如果性能是一个问题,那么您可能需要考虑创建遮罩的另一种方法。
2.位置索引
位置索引(df.iloc[…])有其用例,但这不是其中之一。为了确定切片的位置,我们首先需要执行与上面相同的布尔分析。这使得我们需要执行一个额外的步骤来完成相同的任务。
mask = df['A'] == 'foo'
pos = np.flatnonzero(mask)
df.iloc[pos]
A B C D
0 foo one 0 0
2 foo two 2 4
4 foo two 4 8
6 foo one 6 12
7 foo three 7 14
3.标签索引
标签索引可能非常方便,但在这种情况下,我们再次做了更多的工作,但没有任何好处
df.set_index('A', append=True, drop=False).xs('foo', level=1)
A B C D
0 foo one 0 0
2 foo two 2 4
4 foo two 4 8
6 foo one 6 12
7 foo three 7 14
4.df.query()API
pd.DataFrame.query是执行此任务的一种非常优雅/直观的方式,但通常较慢。但是,如果您注意下面的计时,对于大数据,查询是非常有效的。比标准方法更为重要,而且与我的最佳建议具有相似的重要性。
df.query('A == "foo"')
A B C D
0 foo one 0 0
2 foo two 2 4
4 foo two 4 8
6 foo one 6 12
7 foo three 7 14
我的首选是使用布尔掩码
实际的改进可以通过修改我们创建布尔掩码的方式来实现。
面罩备选方案1使用基础NumPy数组,并放弃创建另一个pd.Series的开销
mask = df['A'].values == 'foo'
最后我将展示更完整的时间测试,但只需看看我们使用示例数据帧获得的性能提升。首先,我们看一下创建遮罩的区别
%timeit mask = df['A'].values == 'foo'
%timeit mask = df['A'] == 'foo'
5.84 µs ± 195 ns per loop (mean ± std. dev. of 7 runs, 100000 loops each)
166 µs ± 4.45 µs per loop (mean ± std. dev. of 7 runs, 10000 loops each)
使用NumPy数组评估掩码的速度大约快30倍。这部分是由于NumPy评估速度通常更快。部分原因还在于缺少构建索引和相应的pd.Series对象所需的开销。
接下来,我们将查看使用一个遮罩与另一个遮罩进行切片的时间。
mask = df['A'].values == 'foo'
%timeit df[mask]
mask = df['A'] == 'foo'
%timeit df[mask]
219 µs ± 12.3 µs per loop (mean ± std. dev. of 7 runs, 1000 loops each)
239 µs ± 7.03 µs per loop (mean ± std. dev. of 7 runs, 1000 loops each)
性能提升并没有那么明显。我们将看看这是否适用于更健壮的测试。
掩模备选方案2我们也可以重建数据帧。重构数据帧时有一个很大的警告,在重构时必须注意数据类型!
我们将这样做而不是df[mask]
pd.DataFrame(df.values[mask], df.index[mask], df.columns).astype(df.dtypes)
如果数据帧是混合类型的,我们的例子就是这样,那么当我们得到df.values时,得到的数组是dtype对象,因此,新数据帧的所有列都是dtype。因此需要astype(df.dtypes)并消除任何潜在的性能增益。
%timeit df[m]
%timeit pd.DataFrame(df.values[mask], df.index[mask], df.columns).astype(df.dtypes)
216 µs ± 10.4 µs per loop (mean ± std. dev. of 7 runs, 1000 loops each)
1.43 ms ± 39.6 µs per loop (mean ± std. dev. of 7 runs, 1000 loops each)
但是,如果数据帧不是混合类型的,这是一种非常有用的方法。
鉴于
np.random.seed([3,1415])
d1 = pd.DataFrame(np.random.randint(10, size=(10, 5)), columns=list('ABCDE'))
d1
A B C D E
0 0 2 7 3 8
1 7 0 6 8 6
2 0 2 0 4 9
3 7 3 2 4 3
4 3 6 7 7 4
5 5 3 7 5 9
6 8 7 6 4 7
7 6 2 6 6 5
8 2 8 7 5 8
9 4 7 6 1 5
%%timeit
mask = d1['A'].values == 7
d1[mask]
179 µs ± 8.73 µs per loop (mean ± std. dev. of 7 runs, 10000 loops each)
对
%%timeit
mask = d1['A'].values == 7
pd.DataFrame(d1.values[mask], d1.index[mask], d1.columns)
87 µs ± 5.12 µs per loop (mean ± std. dev. of 7 runs, 10000 loops each)
我们把时间缩短了一半。
面罩备选方案3
@Unusebu还向我们展示了如何使用pd.Series.isin来说明df[‘A']的每个元素都在一组值中。如果我们的一组值是一个值的集合,即“foo”,则其结果相同。但如果需要,它也可以概括为包含更大的值集。事实证明,尽管这是一个更通用的解决方案,但这仍然很快。唯一真正的损失是那些不熟悉这个概念的人的直觉。
mask = df['A'].isin(['foo'])
df[mask]
A B C D
0 foo one 0 0
2 foo two 2 4
4 foo two 4 8
6 foo one 6 12
7 foo three 7 14
然而,与之前一样,我们可以利用NumPy来提高性能,同时几乎不牺牲任何东西。我们将使用np.in1d
mask = np.in1d(df['A'].values, ['foo'])
df[mask]
A B C D
0 foo one 0 0
2 foo two 2 4
4 foo two 4 8
6 foo one 6 12
7 foo three 7 14
计时
我将包括其他文章中提到的其他概念,以供参考。
下面的代码
此表中的每一列表示不同长度的数据帧,我们将在该数据帧上测试每个函数。每列显示所用的相对时间,最快的函数的基索引为1.0。
res.div(res.min())
10 30 100 300 1000 3000 10000 30000
mask_standard 2.156872 1.850663 2.034149 2.166312 2.164541 3.090372 2.981326 3.131151
mask_standard_loc 1.879035 1.782366 1.988823 2.338112 2.361391 3.036131 2.998112 2.990103
mask_with_values 1.010166 1.000000 1.005113 1.026363 1.028698 1.293741 1.007824 1.016919
mask_with_values_loc 1.196843 1.300228 1.000000 1.000000 1.038989 1.219233 1.037020 1.000000
query 4.997304 4.765554 5.934096 4.500559 2.997924 2.397013 1.680447 1.398190
xs_label 4.124597 4.272363 5.596152 4.295331 4.676591 5.710680 6.032809 8.950255
mask_with_isin 1.674055 1.679935 1.847972 1.724183 1.345111 1.405231 1.253554 1.264760
mask_with_in1d 1.000000 1.083807 1.220493 1.101929 1.000000 1.000000 1.000000 1.144175
您会注意到,mask_with_values和mask_wwith_in1d之间似乎共享了最快的时间。
res.T.plot(loglog=True)
功能
def mask_standard(df):
mask = df['A'] == 'foo'
return df[mask]
def mask_standard_loc(df):
mask = df['A'] == 'foo'
return df.loc[mask]
def mask_with_values(df):
mask = df['A'].values == 'foo'
return df[mask]
def mask_with_values_loc(df):
mask = df['A'].values == 'foo'
return df.loc[mask]
def query(df):
return df.query('A == "foo"')
def xs_label(df):
return df.set_index('A', append=True, drop=False).xs('foo', level=-1)
def mask_with_isin(df):
mask = df['A'].isin(['foo'])
return df[mask]
def mask_with_in1d(df):
mask = np.in1d(df['A'].values, ['foo'])
return df[mask]
测试
res = pd.DataFrame(
index=[
'mask_standard', 'mask_standard_loc', 'mask_with_values', 'mask_with_values_loc',
'query', 'xs_label', 'mask_with_isin', 'mask_with_in1d'
],
columns=[10, 30, 100, 300, 1000, 3000, 10000, 30000],
dtype=float
)
for j in res.columns:
d = pd.concat([df] * j, ignore_index=True)
for i in res.index:a
stmt = '{}(d)'.format(i)
setp = 'from __main__ import d, {}'.format(i)
res.at[i, j] = timeit(stmt, setp, number=50)
特殊时间安排
看看在整个数据帧中只有一个非对象数据类型的特殊情况。
下面的代码
spec.div(spec.min())
10 30 100 300 1000 3000 10000 30000
mask_with_values 1.009030 1.000000 1.194276 1.000000 1.236892 1.095343 1.000000 1.000000
mask_with_in1d 1.104638 1.094524 1.156930 1.072094 1.000000 1.000000 1.040043 1.027100
reconstruct 1.000000 1.142838 1.000000 1.355440 1.650270 2.222181 2.294913 3.406735
事实证明,经过几百行的重建是不值得的。
spec.T.plot(loglog=True)
功能
np.random.seed([3,1415])
d1 = pd.DataFrame(np.random.randint(10, size=(10, 5)), columns=list('ABCDE'))
def mask_with_values(df):
mask = df['A'].values == 'foo'
return df[mask]
def mask_with_in1d(df):
mask = np.in1d(df['A'].values, ['foo'])
return df[mask]
def reconstruct(df):
v = df.values
mask = np.in1d(df['A'].values, ['foo'])
return pd.DataFrame(v[mask], df.index[mask], df.columns)
spec = pd.DataFrame(
index=['mask_with_values', 'mask_with_in1d', 'reconstruct'],
columns=[10, 30, 100, 300, 1000, 3000, 10000, 30000],
dtype=float
)
测试
for j in spec.columns:
d = pd.concat([df] * j, ignore_index=True)
for i in spec.index:
stmt = '{}(d)'.format(i)
setp = 'from __main__ import d, {}'.format(i)
spec.at[i, j] = timeit(stmt, setp, number=50)
我发现前面答案的语法是多余的,很难记住。Pandas在v0.13中引入了query()方法,我更喜欢它。对于您的问题,您可以使用df.query('col==val')。
转载自query()方法(实验):
In [167]: n = 10
In [168]: df = pd.DataFrame(np.random.rand(n, 3), columns=list('abc'))
In [169]: df
Out[169]:
a b c
0 0.687704 0.582314 0.281645
1 0.250846 0.610021 0.420121
2 0.624328 0.401816 0.932146
3 0.011763 0.022921 0.244186
4 0.590198 0.325680 0.890392
5 0.598892 0.296424 0.007312
6 0.634625 0.803069 0.123872
7 0.924168 0.325076 0.303746
8 0.116822 0.364564 0.454607
9 0.986142 0.751953 0.561512
# pure python
In [170]: df[(df.a < df.b) & (df.b < df.c)]
Out[170]:
a b c
3 0.011763 0.022921 0.244186
8 0.116822 0.364564 0.454607
# query
In [171]: df.query('(a < b) & (b < c)')
Out[171]:
a b c
3 0.011763 0.022921 0.244186
8 0.116822 0.364564 0.454607
您还可以通过在环境中添加@来访问变量。
exclude = ('red', 'orange')
df.query('color not in @exclude')
如果您想重复查询数据帧,并且速度对您很重要,最好的方法是将数据帧转换为字典,然后通过这样做,您可以将查询速度提高数千倍。
my_df = df.set_index(column_name)
my_dict = my_df.to_dict('index')
制作my_dict字典后,您可以浏览:
if some_value in my_dict.keys():
my_result = my_dict[some_value]
如果column_name中有重复值,则无法创建字典。但您可以使用:
my_result = my_df.loc[some_value]
tl;博士
熊猫相当于
select * from table where column_name = some_value
is
table[table.column_name == some_value]
多种条件:
table[(table.column_name == some_value) | (table.column_name2 == some_value2)]
or
table.query('column_name == some_value | column_name2 == some_value2')
代码示例
import pandas as pd
# Create data set
d = {'foo':[100, 111, 222],
'bar':[333, 444, 555]}
df = pd.DataFrame(d)
# Full dataframe:
df
# Shows:
# bar foo
# 0 333 100
# 1 444 111
# 2 555 222
# Output only the row(s) in df where foo is 222:
df[df.foo == 222]
# Shows:
# bar foo
# 2 555 222
在上面的代码中,是df[df.foo==222]行根据列值给出行,在本例中为222。
也可能出现多种情况:
df[(df.foo == 222) | (df.bar == 444)]
# bar foo
# 1 444 111
# 2 555 222
但在这一点上,我建议使用查询函数,因为它不那么冗长,并产生相同的结果:
df.query('foo == 222 | bar == 444')
要添加:您还可以执行df.groupby('column_name').get_group('column_desired_value').reset_index()以生成具有特定值的指定列的新数据帧。例如。,
import pandas as pd
df = pd.DataFrame({'A': 'foo bar foo bar foo bar foo foo'.split(),
'B': 'one one two three two two one three'.split()})
print("Original dataframe:")
print(df)
b_is_two_dataframe = pd.DataFrame(df.groupby('B').get_group('two').reset_index()).drop('index', axis = 1)
#NOTE: the final drop is to remove the extra index column returned by groupby object
print('Sub dataframe where B is two:')
print(b_is_two_dataframe)
运行此命令可以:
Original dataframe:
A B
0 foo one
1 bar one
2 foo two
3 bar three
4 foo two
5 bar two
6 foo one
7 foo three
Sub dataframe where B is two:
A B
0 foo two
1 foo two
2 bar two