如何根据Pandas中某列的值从DataFrame中选择行?
在SQL中,我会使用:
SELECT *
FROM table
WHERE column_name = some_value
如何根据Pandas中某列的值从DataFrame中选择行?
在SQL中,我会使用:
SELECT *
FROM table
WHERE column_name = some_value
当前回答
在Pandas的更新版本中,受文档启发(查看数据):
df[df["colume_name"] == some_value] #Scalar, True/False..
df[df["colume_name"] == "some_value"] #String
通过将子句放在括号()中,并用&和|(和/或)组合来组合多个条件。这样地:
df[(df["colume_name"] == "some_value1") & (pd[pd["colume_name"] == "some_value2"])]
其他过滤器
pandas.notna(df["colume_name"]) == True # Not NaN
df['colume_name'].str.contains("text") # Search for "text"
df['colume_name'].str.lower().str.contains("text") # Search for "text", after converting to lowercase
其他回答
您可以在函数中使用loc(方括号):
# Series
s = pd.Series([1, 2, 3, 4])
s.loc[lambda x: x > 1]
# s[lambda x: x > 1]
输出:
1 2
2 3
3 4
dtype: int64
or
# DataFrame
df = pd.DataFrame({'A': [1, 2, 3], 'B': [10, 20, 30]})
df.loc[lambda x: x['A'] > 1]
# df[lambda x: x['A'] > 1]
输出:
A B
1 2 20
2 3 30
要添加:您还可以执行df.groupby('column_name').get_group('column_desired_value').reset_index()以生成具有特定值的指定列的新数据帧。例如。,
import pandas as pd
df = pd.DataFrame({'A': 'foo bar foo bar foo bar foo foo'.split(),
'B': 'one one two three two two one three'.split()})
print("Original dataframe:")
print(df)
b_is_two_dataframe = pd.DataFrame(df.groupby('B').get_group('two').reset_index()).drop('index', axis = 1)
#NOTE: the final drop is to remove the extra index column returned by groupby object
print('Sub dataframe where B is two:')
print(b_is_two_dataframe)
运行此命令可以:
Original dataframe:
A B
0 foo one
1 bar one
2 foo two
3 bar three
4 foo two
5 bar two
6 foo one
7 foo three
Sub dataframe where B is two:
A B
0 foo two
1 foo two
2 bar two
tl;博士
熊猫相当于
select * from table where column_name = some_value
is
table[table.column_name == some_value]
多种条件:
table[(table.column_name == some_value) | (table.column_name2 == some_value2)]
or
table.query('column_name == some_value | column_name2 == some_value2')
代码示例
import pandas as pd
# Create data set
d = {'foo':[100, 111, 222],
'bar':[333, 444, 555]}
df = pd.DataFrame(d)
# Full dataframe:
df
# Shows:
# bar foo
# 0 333 100
# 1 444 111
# 2 555 222
# Output only the row(s) in df where foo is 222:
df[df.foo == 222]
# Shows:
# bar foo
# 2 555 222
在上面的代码中,是df[df.foo==222]行根据列值给出行,在本例中为222。
也可能出现多种情况:
df[(df.foo == 222) | (df.bar == 444)]
# bar foo
# 1 444 111
# 2 555 222
但在这一点上,我建议使用查询函数,因为它不那么冗长,并产生相同的结果:
df.query('foo == 222 | bar == 444')
在Pandas的更新版本中,受文档启发(查看数据):
df[df["colume_name"] == some_value] #Scalar, True/False..
df[df["colume_name"] == "some_value"] #String
通过将子句放在括号()中,并用&和|(和/或)组合来组合多个条件。这样地:
df[(df["colume_name"] == "some_value1") & (pd[pd["colume_name"] == "some_value2"])]
其他过滤器
pandas.notna(df["colume_name"]) == True # Not NaN
df['colume_name'].str.contains("text") # Search for "text"
df['colume_name'].str.lower().str.contains("text") # Search for "text", after converting to lowercase
很好的答案。只有当数据帧的大小接近百万行时,许多方法在使用df[df['col']==val]时往往需要很长时间。我希望“another_column”的所有可能值都对应于“some_column“中的特定值(在本例中是在字典中)。这起作用很快。
s=datetime.datetime.now()
my_dict={}
for i, my_key in enumerate(df['some_column'].values):
if i%100==0:
print(i) # to see the progress
if my_key not in my_dict.keys():
my_dict[my_key]={}
my_dict[my_key]['values']=[df.iloc[i]['another_column']]
else:
my_dict[my_key]['values'].append(df.iloc[i]['another_column'])
e=datetime.datetime.now()
print('operation took '+str(e-s)+' seconds')```