如何根据Pandas中某列的值从DataFrame中选择行?
在SQL中,我会使用:
SELECT *
FROM table
WHERE column_name = some_value
如何根据Pandas中某列的值从DataFrame中选择行?
在SQL中,我会使用:
SELECT *
FROM table
WHERE column_name = some_value
当前回答
使用numpy.where可以获得更快的结果。
例如,使用unubtu的设置-
In [76]: df.iloc[np.where(df.A.values=='foo')]
Out[76]:
A B C D
0 foo one 0 0
2 foo two 2 4
4 foo two 4 8
6 foo one 6 12
7 foo three 7 14
时间比较:
In [68]: %timeit df.iloc[np.where(df.A.values=='foo')] # fastest
1000 loops, best of 3: 380 µs per loop
In [69]: %timeit df.loc[df['A'] == 'foo']
1000 loops, best of 3: 745 µs per loop
In [71]: %timeit df.loc[df['A'].isin(['foo'])]
1000 loops, best of 3: 562 µs per loop
In [72]: %timeit df[df.A=='foo']
1000 loops, best of 3: 796 µs per loop
In [74]: %timeit df.query('(A=="foo")') # slowest
1000 loops, best of 3: 1.71 ms per loop
其他回答
对于Pandas中给定值的多个列中仅选择特定列:
select col_name1, col_name2 from table where column_name = some_value.
选项位置:
df.loc[df['column_name'] == some_value, [col_name1, col_name2]]
或查询:
df.query('column_name == some_value')[[col_name1, col_name2]]
要添加:您还可以执行df.groupby('column_name').get_group('column_desired_value').reset_index()以生成具有特定值的指定列的新数据帧。例如。,
import pandas as pd
df = pd.DataFrame({'A': 'foo bar foo bar foo bar foo foo'.split(),
'B': 'one one two three two two one three'.split()})
print("Original dataframe:")
print(df)
b_is_two_dataframe = pd.DataFrame(df.groupby('B').get_group('two').reset_index()).drop('index', axis = 1)
#NOTE: the final drop is to remove the extra index column returned by groupby object
print('Sub dataframe where B is two:')
print(b_is_two_dataframe)
运行此命令可以:
Original dataframe:
A B
0 foo one
1 bar one
2 foo two
3 bar three
4 foo two
5 bar two
6 foo one
7 foo three
Sub dataframe where B is two:
A B
0 foo two
1 foo two
2 bar two
在Pandas的更新版本中,受文档启发(查看数据):
df[df["colume_name"] == some_value] #Scalar, True/False..
df[df["colume_name"] == "some_value"] #String
通过将子句放在括号()中,并用&和|(和/或)组合来组合多个条件。这样地:
df[(df["colume_name"] == "some_value1") & (pd[pd["colume_name"] == "some_value2"])]
其他过滤器
pandas.notna(df["colume_name"]) == True # Not NaN
df['colume_name'].str.contains("text") # Search for "text"
df['colume_name'].str.lower().str.contains("text") # Search for "text", after converting to lowercase
我发现前面答案的语法是多余的,很难记住。Pandas在v0.13中引入了query()方法,我更喜欢它。对于您的问题,您可以使用df.query('col==val')。
转载自query()方法(实验):
In [167]: n = 10
In [168]: df = pd.DataFrame(np.random.rand(n, 3), columns=list('abc'))
In [169]: df
Out[169]:
a b c
0 0.687704 0.582314 0.281645
1 0.250846 0.610021 0.420121
2 0.624328 0.401816 0.932146
3 0.011763 0.022921 0.244186
4 0.590198 0.325680 0.890392
5 0.598892 0.296424 0.007312
6 0.634625 0.803069 0.123872
7 0.924168 0.325076 0.303746
8 0.116822 0.364564 0.454607
9 0.986142 0.751953 0.561512
# pure python
In [170]: df[(df.a < df.b) & (df.b < df.c)]
Out[170]:
a b c
3 0.011763 0.022921 0.244186
8 0.116822 0.364564 0.454607
# query
In [171]: df.query('(a < b) & (b < c)')
Out[171]:
a b c
3 0.011763 0.022921 0.244186
8 0.116822 0.364564 0.454607
您还可以通过在环境中添加@来访问变量。
exclude = ('red', 'orange')
df.query('color not in @exclude')
使用带有panda>=0.25.00的.query更灵活:
由于panda>=0.25.00,我们可以使用查询方法来使用panda方法过滤数据帧,甚至可以使用带有空格的列名。通常,列名中的空格会给出一个错误,但现在我们可以使用backtick(`)来解决这个问题-请参见GitHub:
# Example dataframe
df = pd.DataFrame({'Sender email':['ex@example.com', "reply@shop.com", "buy@shop.com"]})
Sender email
0 ex@example.com
1 reply@shop.com
2 buy@shop.com
将.query与方法str.endswith一起使用:
df.query('`Sender email`.str.endswith("@shop.com")')
输出
Sender email
1 reply@shop.com
2 buy@shop.com
此外,我们还可以通过在查询中用@前缀来使用局部变量:
domain = 'shop.com'
df.query('`Sender email`.str.endswith(@domain)')
输出
Sender email
1 reply@shop.com
2 buy@shop.com