如何根据Pandas中某列的值从DataFrame中选择行?
在SQL中,我会使用:
SELECT *
FROM table
WHERE column_name = some_value
如何根据Pandas中某列的值从DataFrame中选择行?
在SQL中,我会使用:
SELECT *
FROM table
WHERE column_name = some_value
当前回答
有几种方法可以从Pandas数据帧中选择行:
布尔索引(df[df['col']==value])位置索引(df.iloc[…])标签索引(df.xs(…))df.query(…)API
下面我向您展示了每种方法的示例,并给出了何时使用某些技术的建议。假设我们的标准是列“A”==“foo”
(性能注意:对于每种基本类型,我们可以使用Pandas API保持简单,或者我们可以在API之外冒险,通常使用NumPy,并加快速度。)
安装程序
我们需要做的第一件事是确定一个条件,它将作为我们选择行的标准。我们将从OP的case column_name=some_value开始,并包括一些其他常见用例。
从@unsubu借款:
import pandas as pd, numpy as np
df = pd.DataFrame({'A': 'foo bar foo bar foo bar foo foo'.split(),
'B': 'one one two three two two one three'.split(),
'C': np.arange(8), 'D': np.arange(8) * 2})
1.布尔索引
…布尔索引需要找到每一行的“A”列的真值等于“foo”,然后使用这些真值来确定要保留的行。通常,我们将这个系列命名为真值数组mask。我们也会在这里这样做。
mask = df['A'] == 'foo'
然后,我们可以使用此掩码对数据帧进行切片或索引
df[mask]
A B C D
0 foo one 0 0
2 foo two 2 4
4 foo two 4 8
6 foo one 6 12
7 foo three 7 14
这是完成这项任务的最简单方法之一,如果性能或直觉不是问题,这应该是您选择的方法。但是,如果性能是一个问题,那么您可能需要考虑创建遮罩的另一种方法。
2.位置索引
位置索引(df.iloc[…])有其用例,但这不是其中之一。为了确定切片的位置,我们首先需要执行与上面相同的布尔分析。这使得我们需要执行一个额外的步骤来完成相同的任务。
mask = df['A'] == 'foo'
pos = np.flatnonzero(mask)
df.iloc[pos]
A B C D
0 foo one 0 0
2 foo two 2 4
4 foo two 4 8
6 foo one 6 12
7 foo three 7 14
3.标签索引
标签索引可能非常方便,但在这种情况下,我们再次做了更多的工作,但没有任何好处
df.set_index('A', append=True, drop=False).xs('foo', level=1)
A B C D
0 foo one 0 0
2 foo two 2 4
4 foo two 4 8
6 foo one 6 12
7 foo three 7 14
4.df.query()API
pd.DataFrame.query是执行此任务的一种非常优雅/直观的方式,但通常较慢。但是,如果您注意下面的计时,对于大数据,查询是非常有效的。比标准方法更为重要,而且与我的最佳建议具有相似的重要性。
df.query('A == "foo"')
A B C D
0 foo one 0 0
2 foo two 2 4
4 foo two 4 8
6 foo one 6 12
7 foo three 7 14
我的首选是使用布尔掩码
实际的改进可以通过修改我们创建布尔掩码的方式来实现。
面罩备选方案1使用基础NumPy数组,并放弃创建另一个pd.Series的开销
mask = df['A'].values == 'foo'
最后我将展示更完整的时间测试,但只需看看我们使用示例数据帧获得的性能提升。首先,我们看一下创建遮罩的区别
%timeit mask = df['A'].values == 'foo'
%timeit mask = df['A'] == 'foo'
5.84 µs ± 195 ns per loop (mean ± std. dev. of 7 runs, 100000 loops each)
166 µs ± 4.45 µs per loop (mean ± std. dev. of 7 runs, 10000 loops each)
使用NumPy数组评估掩码的速度大约快30倍。这部分是由于NumPy评估速度通常更快。部分原因还在于缺少构建索引和相应的pd.Series对象所需的开销。
接下来,我们将查看使用一个遮罩与另一个遮罩进行切片的时间。
mask = df['A'].values == 'foo'
%timeit df[mask]
mask = df['A'] == 'foo'
%timeit df[mask]
219 µs ± 12.3 µs per loop (mean ± std. dev. of 7 runs, 1000 loops each)
239 µs ± 7.03 µs per loop (mean ± std. dev. of 7 runs, 1000 loops each)
性能提升并没有那么明显。我们将看看这是否适用于更健壮的测试。
掩模备选方案2我们也可以重建数据帧。重构数据帧时有一个很大的警告,在重构时必须注意数据类型!
我们将这样做而不是df[mask]
pd.DataFrame(df.values[mask], df.index[mask], df.columns).astype(df.dtypes)
如果数据帧是混合类型的,我们的例子就是这样,那么当我们得到df.values时,得到的数组是dtype对象,因此,新数据帧的所有列都是dtype。因此需要astype(df.dtypes)并消除任何潜在的性能增益。
%timeit df[m]
%timeit pd.DataFrame(df.values[mask], df.index[mask], df.columns).astype(df.dtypes)
216 µs ± 10.4 µs per loop (mean ± std. dev. of 7 runs, 1000 loops each)
1.43 ms ± 39.6 µs per loop (mean ± std. dev. of 7 runs, 1000 loops each)
但是,如果数据帧不是混合类型的,这是一种非常有用的方法。
鉴于
np.random.seed([3,1415])
d1 = pd.DataFrame(np.random.randint(10, size=(10, 5)), columns=list('ABCDE'))
d1
A B C D E
0 0 2 7 3 8
1 7 0 6 8 6
2 0 2 0 4 9
3 7 3 2 4 3
4 3 6 7 7 4
5 5 3 7 5 9
6 8 7 6 4 7
7 6 2 6 6 5
8 2 8 7 5 8
9 4 7 6 1 5
%%timeit
mask = d1['A'].values == 7
d1[mask]
179 µs ± 8.73 µs per loop (mean ± std. dev. of 7 runs, 10000 loops each)
对
%%timeit
mask = d1['A'].values == 7
pd.DataFrame(d1.values[mask], d1.index[mask], d1.columns)
87 µs ± 5.12 µs per loop (mean ± std. dev. of 7 runs, 10000 loops each)
我们把时间缩短了一半。
面罩备选方案3
@Unusebu还向我们展示了如何使用pd.Series.isin来说明df[‘A']的每个元素都在一组值中。如果我们的一组值是一个值的集合,即“foo”,则其结果相同。但如果需要,它也可以概括为包含更大的值集。事实证明,尽管这是一个更通用的解决方案,但这仍然很快。唯一真正的损失是那些不熟悉这个概念的人的直觉。
mask = df['A'].isin(['foo'])
df[mask]
A B C D
0 foo one 0 0
2 foo two 2 4
4 foo two 4 8
6 foo one 6 12
7 foo three 7 14
然而,与之前一样,我们可以利用NumPy来提高性能,同时几乎不牺牲任何东西。我们将使用np.in1d
mask = np.in1d(df['A'].values, ['foo'])
df[mask]
A B C D
0 foo one 0 0
2 foo two 2 4
4 foo two 4 8
6 foo one 6 12
7 foo three 7 14
计时
我将包括其他文章中提到的其他概念,以供参考。
下面的代码
此表中的每一列表示不同长度的数据帧,我们将在该数据帧上测试每个函数。每列显示所用的相对时间,最快的函数的基索引为1.0。
res.div(res.min())
10 30 100 300 1000 3000 10000 30000
mask_standard 2.156872 1.850663 2.034149 2.166312 2.164541 3.090372 2.981326 3.131151
mask_standard_loc 1.879035 1.782366 1.988823 2.338112 2.361391 3.036131 2.998112 2.990103
mask_with_values 1.010166 1.000000 1.005113 1.026363 1.028698 1.293741 1.007824 1.016919
mask_with_values_loc 1.196843 1.300228 1.000000 1.000000 1.038989 1.219233 1.037020 1.000000
query 4.997304 4.765554 5.934096 4.500559 2.997924 2.397013 1.680447 1.398190
xs_label 4.124597 4.272363 5.596152 4.295331 4.676591 5.710680 6.032809 8.950255
mask_with_isin 1.674055 1.679935 1.847972 1.724183 1.345111 1.405231 1.253554 1.264760
mask_with_in1d 1.000000 1.083807 1.220493 1.101929 1.000000 1.000000 1.000000 1.144175
您会注意到,mask_with_values和mask_wwith_in1d之间似乎共享了最快的时间。
res.T.plot(loglog=True)
功能
def mask_standard(df):
mask = df['A'] == 'foo'
return df[mask]
def mask_standard_loc(df):
mask = df['A'] == 'foo'
return df.loc[mask]
def mask_with_values(df):
mask = df['A'].values == 'foo'
return df[mask]
def mask_with_values_loc(df):
mask = df['A'].values == 'foo'
return df.loc[mask]
def query(df):
return df.query('A == "foo"')
def xs_label(df):
return df.set_index('A', append=True, drop=False).xs('foo', level=-1)
def mask_with_isin(df):
mask = df['A'].isin(['foo'])
return df[mask]
def mask_with_in1d(df):
mask = np.in1d(df['A'].values, ['foo'])
return df[mask]
测试
res = pd.DataFrame(
index=[
'mask_standard', 'mask_standard_loc', 'mask_with_values', 'mask_with_values_loc',
'query', 'xs_label', 'mask_with_isin', 'mask_with_in1d'
],
columns=[10, 30, 100, 300, 1000, 3000, 10000, 30000],
dtype=float
)
for j in res.columns:
d = pd.concat([df] * j, ignore_index=True)
for i in res.index:a
stmt = '{}(d)'.format(i)
setp = 'from __main__ import d, {}'.format(i)
res.at[i, j] = timeit(stmt, setp, number=50)
特殊时间安排
看看在整个数据帧中只有一个非对象数据类型的特殊情况。
下面的代码
spec.div(spec.min())
10 30 100 300 1000 3000 10000 30000
mask_with_values 1.009030 1.000000 1.194276 1.000000 1.236892 1.095343 1.000000 1.000000
mask_with_in1d 1.104638 1.094524 1.156930 1.072094 1.000000 1.000000 1.040043 1.027100
reconstruct 1.000000 1.142838 1.000000 1.355440 1.650270 2.222181 2.294913 3.406735
事实证明,经过几百行的重建是不值得的。
spec.T.plot(loglog=True)
功能
np.random.seed([3,1415])
d1 = pd.DataFrame(np.random.randint(10, size=(10, 5)), columns=list('ABCDE'))
def mask_with_values(df):
mask = df['A'].values == 'foo'
return df[mask]
def mask_with_in1d(df):
mask = np.in1d(df['A'].values, ['foo'])
return df[mask]
def reconstruct(df):
v = df.values
mask = np.in1d(df['A'].values, ['foo'])
return pd.DataFrame(v[mask], df.index[mask], df.columns)
spec = pd.DataFrame(
index=['mask_with_values', 'mask_with_in1d', 'reconstruct'],
columns=[10, 30, 100, 300, 1000, 3000, 10000, 30000],
dtype=float
)
测试
for j in spec.columns:
d = pd.concat([df] * j, ignore_index=True)
for i in spec.index:
stmt = '{}(d)'.format(i)
setp = 'from __main__ import d, {}'.format(i)
spec.at[i, j] = timeit(stmt, setp, number=50)
其他回答
对于Pandas中给定值的多个列中仅选择特定列:
select col_name1, col_name2 from table where column_name = some_value.
选项位置:
df.loc[df['column_name'] == some_value, [col_name1, col_name2]]
或查询:
df.query('column_name == some_value')[[col_name1, col_name2]]
在Pandas的更新版本中,受文档启发(查看数据):
df[df["colume_name"] == some_value] #Scalar, True/False..
df[df["colume_name"] == "some_value"] #String
通过将子句放在括号()中,并用&和|(和/或)组合来组合多个条件。这样地:
df[(df["colume_name"] == "some_value1") & (pd[pd["colume_name"] == "some_value2"])]
其他过滤器
pandas.notna(df["colume_name"]) == True # Not NaN
df['colume_name'].str.contains("text") # Search for "text"
df['colume_name'].str.lower().str.contains("text") # Search for "text", after converting to lowercase
下面是一个简单的例子
from pandas import DataFrame
# Create data set
d = {'Revenue':[100,111,222],
'Cost':[333,444,555]}
df = DataFrame(d)
# mask = Return True when the value in column "Revenue" is equal to 111
mask = df['Revenue'] == 111
print mask
# Result:
# 0 False
# 1 True
# 2 False
# Name: Revenue, dtype: bool
# Select * FROM df WHERE Revenue = 111
df[mask]
# Result:
# Cost Revenue
# 1 444 111
使用numpy.where可以获得更快的结果。
例如,使用unubtu的设置-
In [76]: df.iloc[np.where(df.A.values=='foo')]
Out[76]:
A B C D
0 foo one 0 0
2 foo two 2 4
4 foo two 4 8
6 foo one 6 12
7 foo three 7 14
时间比较:
In [68]: %timeit df.iloc[np.where(df.A.values=='foo')] # fastest
1000 loops, best of 3: 380 µs per loop
In [69]: %timeit df.loc[df['A'] == 'foo']
1000 loops, best of 3: 745 µs per loop
In [71]: %timeit df.loc[df['A'].isin(['foo'])]
1000 loops, best of 3: 562 µs per loop
In [72]: %timeit df[df.A=='foo']
1000 loops, best of 3: 796 µs per loop
In [74]: %timeit df.query('(A=="foo")') # slowest
1000 loops, best of 3: 1.71 ms per loop
使用DuckDB选择行的DataFrames上的SQL语句
使用DuckDB,我们可以用SQL语句以高性能的方式查询panda DataFrames。
由于问题是如何根据列值从DataFrame中选择行?,问题中的示例是一个SQL查询,这个答案在本主题中看起来很合理。
例子:
In [1]: import duckdb
In [2]: import pandas as pd
In [3]: con = duckdb.connect()
In [4]: df = pd.DataFrame({"A": range(11), "B": range(11, 22)})
In [5]: df
Out[5]:
A B
0 0 11
1 1 12
2 2 13
3 3 14
4 4 15
5 5 16
6 6 17
7 7 18
8 8 19
9 9 20
10 10 21
In [6]: results = con.execute("SELECT * FROM df where A > 2").df()
In [7]: results
Out[7]:
A B
0 3 14
1 4 15
2 5 16
3 6 17
4 7 18
5 8 19
6 9 20
7 10 21