如何根据Pandas中某列的值从DataFrame中选择行?
在SQL中,我会使用:
SELECT *
FROM table
WHERE column_name = some_value
如何根据Pandas中某列的值从DataFrame中选择行?
在SQL中,我会使用:
SELECT *
FROM table
WHERE column_name = some_value
当前回答
下面是一个简单的例子
from pandas import DataFrame
# Create data set
d = {'Revenue':[100,111,222],
'Cost':[333,444,555]}
df = DataFrame(d)
# mask = Return True when the value in column "Revenue" is equal to 111
mask = df['Revenue'] == 111
print mask
# Result:
# 0 False
# 1 True
# 2 False
# Name: Revenue, dtype: bool
# Select * FROM df WHERE Revenue = 111
df[mask]
# Result:
# Cost Revenue
# 1 444 111
其他回答
很好的答案。只有当数据帧的大小接近百万行时,许多方法在使用df[df['col']==val]时往往需要很长时间。我希望“another_column”的所有可能值都对应于“some_column“中的特定值(在本例中是在字典中)。这起作用很快。
s=datetime.datetime.now()
my_dict={}
for i, my_key in enumerate(df['some_column'].values):
if i%100==0:
print(i) # to see the progress
if my_key not in my_dict.keys():
my_dict[my_key]={}
my_dict[my_key]['values']=[df.iloc[i]['another_column']]
else:
my_dict[my_key]['values'].append(df.iloc[i]['another_column'])
e=datetime.datetime.now()
print('operation took '+str(e-s)+' seconds')```
要添加:您还可以执行df.groupby('column_name').get_group('column_desired_value').reset_index()以生成具有特定值的指定列的新数据帧。例如。,
import pandas as pd
df = pd.DataFrame({'A': 'foo bar foo bar foo bar foo foo'.split(),
'B': 'one one two three two two one three'.split()})
print("Original dataframe:")
print(df)
b_is_two_dataframe = pd.DataFrame(df.groupby('B').get_group('two').reset_index()).drop('index', axis = 1)
#NOTE: the final drop is to remove the extra index column returned by groupby object
print('Sub dataframe where B is two:')
print(b_is_two_dataframe)
运行此命令可以:
Original dataframe:
A B
0 foo one
1 bar one
2 foo two
3 bar three
4 foo two
5 bar two
6 foo one
7 foo three
Sub dataframe where B is two:
A B
0 foo two
1 foo two
2 bar two
在Pandas的更新版本中,受文档启发(查看数据):
df[df["colume_name"] == some_value] #Scalar, True/False..
df[df["colume_name"] == "some_value"] #String
通过将子句放在括号()中,并用&和|(和/或)组合来组合多个条件。这样地:
df[(df["colume_name"] == "some_value1") & (pd[pd["colume_name"] == "some_value2"])]
其他过滤器
pandas.notna(df["colume_name"]) == True # Not NaN
df['colume_name'].str.contains("text") # Search for "text"
df['colume_name'].str.lower().str.contains("text") # Search for "text", after converting to lowercase
使用numpy.where可以获得更快的结果。
例如,使用unubtu的设置-
In [76]: df.iloc[np.where(df.A.values=='foo')]
Out[76]:
A B C D
0 foo one 0 0
2 foo two 2 4
4 foo two 4 8
6 foo one 6 12
7 foo three 7 14
时间比较:
In [68]: %timeit df.iloc[np.where(df.A.values=='foo')] # fastest
1000 loops, best of 3: 380 µs per loop
In [69]: %timeit df.loc[df['A'] == 'foo']
1000 loops, best of 3: 745 µs per loop
In [71]: %timeit df.loc[df['A'].isin(['foo'])]
1000 loops, best of 3: 562 µs per loop
In [72]: %timeit df[df.A=='foo']
1000 loops, best of 3: 796 µs per loop
In [74]: %timeit df.query('(A=="foo")') # slowest
1000 loops, best of 3: 1.71 ms per loop
1.在query()调用中使用f-string
如果用于过滤数据帧的列名来自本地变量,则f-string可能有用。例如
col = 'A'
df.query(f"{col} == 'foo'")
事实上,f-string也可以用于查询变量(datetime除外):
col = 'A'
my_var = 'foo'
df.query(f"{col} == '{my_var}'") # if my_var is a string
my_num = 1
df.query(f"{col} == {my_num}") # if my_var is a number
my_date = '2022-12-10'
df.query(f"{col} == @my_date") # must use @ for datetime though
2.安装numexpr以加快query()调用
panda文档建议在使用query()时安装numexpr以加速数值计算。使用pipinstallnumexpr(或conda、sudo等,具体取决于您的环境)来安装它。
对于更大的数据帧(性能非常重要),带有numexpr引擎的df.query()比df[mask]执行得更快。特别是,它在以下情况下表现更好。
字符串列上的逻辑和/或比较运算符
如果将一列字符串与其他字符串进行比较,并且要选择匹配的行,即使是单个比较操作,query()的执行速度也比df[mask]快。例如,对于具有80k行的数据帧,速度快30%1,对于具有800k行的数据框架,速度快60%。2
df[df.A == 'foo']
df.query("A == 'foo'") # <--- performs 30%-60% faster
这一差距随着操作数量的增加而增加(如果链接了4个比较df.query()比df[mask]快2-2.3倍)1,2和/或数据帧长度的增加而增大。2
数字列上的多个操作
如果需要计算多个算术、逻辑或比较操作来创建布尔掩码以过滤df,则query()执行速度更快。例如,对于一个有80k行的帧,它的速度快20%1,而对于一个800k行的帧来说,速度快2倍。2
df[(df.B % 5) **2 < 0.1]
df.query("(B % 5) **2 < 0.1") # <--- performs 20%-100% faster.
随着操作数量的增加和/或数据帧长度的增加,性能差距也会增加。2
下图显示了随着数据帧长度的增加,这些方法的性能。3
3.在query()中调用panda方法
Numexpr当前仅支持逻辑(&,|,~)、比较(==,>,<,>=,<=,!=)和基本算术运算符(+,-,*,/,**,%)。
例如,它不支持整数除法(//)。然而,调用等效的panda方法(floordiv())是有效的。
df.query('B.floordiv(2) <= 3') # or
df.query('B.floordiv(2).le(3)')
# for pandas < 1.4, need `.values`
df.query('B.floordiv(2).values <= 3')
1使用80k行框架的基准代码
import numpy as np
df = pd.DataFrame({'A': 'foo bar foo baz foo bar foo foo'.split()*10000,
'B': np.random.rand(80000)})
%timeit df[df.A == 'foo']
# 8.5 ms ± 104.5 µs per loop (mean ± std. dev. of 7 runs, 100 loops each)
%timeit df.query("A == 'foo'")
# 6.36 ms ± 95.7 µs per loop (mean ± std. dev. of 7 runs, 100 loops each)
%timeit df[((df.A == 'foo') & (df.A != 'bar')) | ((df.A != 'baz') & (df.A != 'buz'))]
# 29 ms ± 554 µs per loop (mean ± std. dev. of 10 runs, 100 loops each)
%timeit df.query("A == 'foo' & A != 'bar' | A != 'baz' & A != 'buz'")
# 16 ms ± 339 µs per loop (mean ± std. dev. of 10 runs, 100 loops each)
%timeit df[(df.B % 5) **2 < 0.1]
# 5.35 ms ± 37.6 µs per loop (mean ± std. dev. of 7 runs, 100 loops each)
%timeit df.query("(B % 5) **2 < 0.1")
# 4.37 ms ± 46.3 µs per loop (mean ± std. dev. of 7 runs, 100 loops each)
2使用800k行框架的基准代码
df = pd.DataFrame({'A': 'foo bar foo baz foo bar foo foo'.split()*100000,
'B': np.random.rand(800000)})
%timeit df[df.A == 'foo']
# 87.9 ms ± 873 µs per loop (mean ± std. dev. of 10 runs, 100 loops each)
%timeit df.query("A == 'foo'")
# 54.4 ms ± 726 µs per loop (mean ± std. dev. of 10 runs, 100 loops each)
%timeit df[((df.A == 'foo') & (df.A != 'bar')) | ((df.A != 'baz') & (df.A != 'buz'))]
# 310 ms ± 3.4 ms per loop (mean ± std. dev. of 10 runs, 100 loops each)
%timeit df.query("A == 'foo' & A != 'bar' | A != 'baz' & A != 'buz'")
# 132 ms ± 2.43 ms per loop (mean ± std. dev. of 10 runs, 100 loops each)
%timeit df[(df.B % 5) **2 < 0.1]
# 54 ms ± 488 µs per loop (mean ± std. dev. of 10 runs, 100 loops each)
%timeit df.query("(B % 5) **2 < 0.1")
# 26.3 ms ± 320 µs per loop (mean ± std. dev. of 10 runs, 100 loops each)
3:用于生成字符串和数字的两种方法的性能图的代码。
from perfplot import plot
constructor = lambda n: pd.DataFrame({'A': 'foo bar foo baz foo bar foo foo'.split()*n, 'B': np.random.rand(8*n)})
plot(
setup=constructor,
kernels=[lambda df: df[(df.B%5)**2<0.1], lambda df: df.query("(B%5)**2<0.1")],
labels= ['df[(df.B % 5) **2 < 0.1]', 'df.query("(B % 5) **2 < 0.1")'],
n_range=[2**k for k in range(4, 24)],
xlabel='Rows in DataFrame',
title='Multiple mathematical operations on numbers',
equality_check=pd.DataFrame.equals);
plot(
setup=constructor,
kernels=[lambda df: df[df.A == 'foo'], lambda df: df.query("A == 'foo'")],
labels= ["df[df.A == 'foo']", """df.query("A == 'foo'")"""],
n_range=[2**k for k in range(4, 24)],
xlabel='Rows in DataFrame',
title='Comparison operation on strings',
equality_check=pd.DataFrame.equals);