我有一个数据帧。我们就叫他鲍勃吧:

> head(bob)
                 phenotype                         exclusion
GSM399350 3- 4- 8- 25- 44+ 11b- 11c- 19- NK1.1- Gr1- TER119-
GSM399351 3- 4- 8- 25- 44+ 11b- 11c- 19- NK1.1- Gr1- TER119-
GSM399352 3- 4- 8- 25- 44+ 11b- 11c- 19- NK1.1- Gr1- TER119-
GSM399353 3- 4- 8- 25+ 44+ 11b- 11c- 19- NK1.1- Gr1- TER119-
GSM399354 3- 4- 8- 25+ 44+ 11b- 11c- 19- NK1.1- Gr1- TER119-
GSM399355 3- 4- 8- 25+ 44+ 11b- 11c- 19- NK1.1- Gr1- TER119-

我想连接这个数据帧的行(这将是另一个问题)。但看:

> class(bob$phenotype)
[1] "factor"

Bob的列是因子。举个例子:

> as.character(head(bob))
[1] "c(3, 3, 3, 6, 6, 6)"       "c(3, 3, 3, 3, 3, 3)"      
[3] "c(29, 29, 29, 30, 30, 30)"

我不太明白这一点,但我猜这些是进入鲍勃(卡拉克塔克斯国王的法庭)的列的因子水平的指数?不是我需要的。

奇怪的是,我可以徒手浏览bob的列

bob$phenotype <- as.character(bob$phenotype)

这很好。并且,在一些输入之后,我可以得到一个data.frame,它的列是字符而不是因子。我的问题是:我如何自动地做到这一点?我如何将一个data.frame与因子列转换为一个data.frame与字符列,而不必手动遍历每一列?

附加问题:为什么手动方法有效?


当前回答

仅替换因素:

i <- sapply(bob, is.factor)
bob[i] <- lapply(bob[i], as.character)

在0.5.0版的dplyr包中引入了新的函数mutate_if:

library(dplyr)
bob %>% mutate_if(is.factor, as.character) -> bob

...在1.0.0版本中被across取代:

library(dplyr)
bob %>% mutate(across(where(is.factor), as.character)) -> bob

RStudio中的包purrr提供了另一种选择:

library(purrr)
bob %>% modify_if(is.factor, as.character) -> bob

其他回答

仅替换因素:

i <- sapply(bob, is.factor)
bob[i] <- lapply(bob[i], as.character)

在0.5.0版的dplyr包中引入了新的函数mutate_if:

library(dplyr)
bob %>% mutate_if(is.factor, as.character) -> bob

...在1.0.0版本中被across取代:

library(dplyr)
bob %>% mutate(across(where(is.factor), as.character)) -> bob

RStudio中的包purrr提供了另一种选择:

library(purrr)
bob %>% modify_if(is.factor, as.character) -> bob

只是跟着马特和德克。如果你想在不改变全局选项的情况下重新创建现有的数据帧,你可以用apply语句重新创建它:

bob <- data.frame(lapply(bob, as.character), stringsAsFactors=FALSE)

这将把所有变量转换为“character”类,如果你只想转换因子,请参阅下面Marek的解决方案。

正如@hadley指出的那样,以下内容更简洁。

bob[] <- lapply(bob, as.character)

在这两种情况下,lapply输出一个列表;然而,由于R的神奇属性,在第二种情况下使用[]保留了bob对象的data.frame类,从而消除了使用as.data.frame转换回data.frame的需要,并使用参数stringsAsFactors = FALSE。

如果您了解因子是如何存储的,就可以避免使用基于应用程序的函数来实现这一点。这并不是说应用解决方案不能很好地工作。

因素的结构是与“级别”列表相关联的数字索引。如果将因数转换为数字,就可以看到这一点。所以:

> fact <- as.factor(c("a","b","a","d")
> fact
[1] a b a d
Levels: a b d

> as.numeric(fact)
[1] 1 2 1 3

最后一行返回的数字对应于因子的级别。

> levels(fact)
[1] "a" "b" "d"

注意,levels()返回一个字符数组。你可以使用这个事实轻松简洁地将因数转换为字符串或数字,如下所示:

> fact_character <- levels(fact)[as.numeric(fact)]
> fact_character
[1] "a" "b" "a" "d"

这也适用于数值,只要你用as.numeric()包装你的表达式。

> num_fact <- factor(c(1,2,3,6,5,4))
> num_fact
[1] 1 2 3 6 5 4
Levels: 1 2 3 4 5 6
> num_num <- as.numeric(levels(num_fact)[as.numeric(num_fact)])
> num_num
[1] 1 2 3 6 5 4

另一种方法是使用apply转换它

bob2 <- apply(bob,2,as.character)

和一个更好的(前一个是'matrix'类)

bob2 <- as.data.frame(as.matrix(bob),stringsAsFactors=F)

这对我来说很管用——我终于想出了一句话

df <- as.data.frame(lapply(df,function (y) if(class(y)=="factor" ) as.character(y) else y),stringsAsFactors=F)