我有一个数据帧。我们就叫他鲍勃吧:

> head(bob)
                 phenotype                         exclusion
GSM399350 3- 4- 8- 25- 44+ 11b- 11c- 19- NK1.1- Gr1- TER119-
GSM399351 3- 4- 8- 25- 44+ 11b- 11c- 19- NK1.1- Gr1- TER119-
GSM399352 3- 4- 8- 25- 44+ 11b- 11c- 19- NK1.1- Gr1- TER119-
GSM399353 3- 4- 8- 25+ 44+ 11b- 11c- 19- NK1.1- Gr1- TER119-
GSM399354 3- 4- 8- 25+ 44+ 11b- 11c- 19- NK1.1- Gr1- TER119-
GSM399355 3- 4- 8- 25+ 44+ 11b- 11c- 19- NK1.1- Gr1- TER119-

我想连接这个数据帧的行(这将是另一个问题)。但看:

> class(bob$phenotype)
[1] "factor"

Bob的列是因子。举个例子:

> as.character(head(bob))
[1] "c(3, 3, 3, 6, 6, 6)"       "c(3, 3, 3, 3, 3, 3)"      
[3] "c(29, 29, 29, 30, 30, 30)"

我不太明白这一点,但我猜这些是进入鲍勃(卡拉克塔克斯国王的法庭)的列的因子水平的指数?不是我需要的。

奇怪的是,我可以徒手浏览bob的列

bob$phenotype <- as.character(bob$phenotype)

这很好。并且,在一些输入之后,我可以得到一个data.frame,它的列是字符而不是因子。我的问题是:我如何自动地做到这一点?我如何将一个data.frame与因子列转换为一个data.frame与字符列,而不必手动遍历每一列?

附加问题:为什么手动方法有效?


当前回答

dplyr 1.0.0版引入了新函数“across”。新函数将取代作用域变量(_if, _at, _all)。这是官方文件

library(dplyr)
bob <- bob %>% 
       mutate(across(where(is.factor), as.character))

其他回答

更新:这里有一个不起作用的例子。我认为它会,但我认为stringsAsFactors选项只适用于字符串-它离开因子单独。

试试这个:

bob2 <- data.frame(bob, stringsAsFactors = FALSE)

一般来说,当你遇到应该是字符的因子的问题时,总会有一个stringsAsFactors设置来帮助你(包括一个全局设置)。

这对我来说很管用——我终于想出了一句话

df <- as.data.frame(lapply(df,function (y) if(class(y)=="factor" ) as.character(y) else y),stringsAsFactors=F)

我通常将这个函数与我的所有项目分开。又快又简单。

unfactorize <- function(df){
  for(i in which(sapply(df, class) == "factor")) df[[i]] = as.character(df[[i]])
  return(df)
}

只是跟着马特和德克。如果你想在不改变全局选项的情况下重新创建现有的数据帧,你可以用apply语句重新创建它:

bob <- data.frame(lapply(bob, as.character), stringsAsFactors=FALSE)

这将把所有变量转换为“character”类,如果你只想转换因子,请参阅下面Marek的解决方案。

正如@hadley指出的那样,以下内容更简洁。

bob[] <- lapply(bob, as.character)

在这两种情况下,lapply输出一个列表;然而,由于R的神奇属性,在第二种情况下使用[]保留了bob对象的data.frame类,从而消除了使用as.data.frame转换回data.frame的需要,并使用参数stringsAsFactors = FALSE。

如果你使用数据。表包对data.frame的操作,那么问题就不存在了。

library(data.table)
dt = data.table(col1 = c("a","b","c"), col2 = 1:3)
sapply(dt, class)
#       col1        col2 
#"character"   "integer" 

如果你在你的数据集中已经有一个因子列,你想把它们转换成字符,你可以这样做。

library(data.table)
dt = data.table(col1 = factor(c("a","b","c")), col2 = 1:3)
sapply(dt, class)
#     col1      col2 
# "factor" "integer" 
upd.cols = sapply(dt, is.factor)
dt[, names(dt)[upd.cols] := lapply(.SD, as.character), .SDcols = upd.cols]
sapply(dt, class)
#       col1        col2 
#"character"   "integer"