这是一个logistic sigmoid函数:
我知道x,现在如何用Python计算F(x) ?
设x = 0.458。
F(x) = ?
这是一个logistic sigmoid函数:
我知道x,现在如何用Python计算F(x) ?
设x = 0.458。
F(x) = ?
当前回答
下面是执行相同操作的python函数。
def sigmoid(x) :
return 1.0/(1+np.exp(-x))
其他回答
使用pandas DataFrame/Series或numpy数组时的向量化方法:
上面的答案是用于单点计算的优化方法,但当你想将这些方法应用到pandas系列或numpy数组时,它需要apply,这基本上是在后台进行循环,将遍历每一行并应用该方法。这是非常低效的。
为了加速我们的代码,我们可以使用向量化和numpy广播:
x = np.arange(-5,5)
np.divide(1, 1+np.exp(-x))
0 0.006693
1 0.017986
2 0.047426
3 0.119203
4 0.268941
5 0.500000
6 0.731059
7 0.880797
8 0.952574
9 0.982014
dtype: float64
或与熊猫系列:
x = pd.Series(np.arange(-5,5))
np.divide(1, 1+np.exp(-x))
Tensorflow还包括一个sigmoid函数: https://www.tensorflow.org/versions/r1.2/api_docs/python/tf/sigmoid
import tensorflow as tf
sess = tf.InteractiveSession()
x = 0.458
y = tf.sigmoid(x)
u = y.eval()
print(u)
# 0.6125396
可以计算为:
import math
def sigmoid(x):
return 1 / (1 + math.exp(-x))
或概念性的,更深的,没有任何进口性的:
def sigmoid(x):
return 1 / (1 + 2.718281828 ** -x)
或者你可以对矩阵使用numpy:
import numpy as np #make sure numpy is already installed
def sigmoid(x):
return 1 / (1 + np.exp(-x))
logistic s型函数的数值稳定版本。
def sigmoid(x):
pos_mask = (x >= 0)
neg_mask = (x < 0)
z = np.zeros_like(x,dtype=float)
z[pos_mask] = np.exp(-x[pos_mask])
z[neg_mask] = np.exp(x[neg_mask])
top = np.ones_like(x,dtype=float)
top[neg_mask] = z[neg_mask]
return top / (1 + z)
另一种方式
>>> def sigmoid(x):
... return 1 /(1+(math.e**-x))
...
>>> sigmoid(0.458)